Metamath Proof Explorer


Theorem trfil2

Description: Conditions for the trace of a filter L to be a filter. (Contributed by FL, 2-Sep-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion trfil2 LFilYAYL𝑡AFilAvLvA

Proof

Step Hyp Ref Expression
1 simpr LFilYAYAY
2 sseqin2 AYYA=A
3 1 2 sylib LFilYAYYA=A
4 simpl LFilYAYLFilY
5 id AYAY
6 filtop LFilYYL
7 ssexg AYYLAV
8 5 6 7 syl2anr LFilYAYAV
9 6 adantr LFilYAYYL
10 elrestr LFilYAVYLYAL𝑡A
11 4 8 9 10 syl3anc LFilYAYYAL𝑡A
12 3 11 eqeltrrd LFilYAYAL𝑡A
13 elpwi x𝒫AxA
14 vex uV
15 14 inex1 uAV
16 15 a1i LFilYAYxAuLuAV
17 elrest LFilYAVyL𝑡AuLy=uA
18 8 17 syldan LFilYAYyL𝑡AuLy=uA
19 18 adantr LFilYAYxAyL𝑡AuLy=uA
20 simpr LFilYAYxAy=uAy=uA
21 20 sseq1d LFilYAYxAy=uAyxuAx
22 16 19 21 rexxfr2d LFilYAYxAyL𝑡AyxuLuAx
23 indir uxA=uAxA
24 simplr LFilYAYxAuLuAxxA
25 df-ss xAxA=x
26 24 25 sylib LFilYAYxAuLuAxxA=x
27 26 uneq2d LFilYAYxAuLuAxuAxA=uAx
28 simprr LFilYAYxAuLuAxuAx
29 ssequn1 uAxuAx=x
30 28 29 sylib LFilYAYxAuLuAxuAx=x
31 27 30 eqtrd LFilYAYxAuLuAxuAxA=x
32 23 31 eqtrid LFilYAYxAuLuAxuxA=x
33 simplll LFilYAYxAuLuAxLFilY
34 simpllr LFilYAYxAuLuAxAY
35 33 34 8 syl2anc LFilYAYxAuLuAxAV
36 simprl LFilYAYxAuLuAxuL
37 filelss LFilYuLuY
38 33 36 37 syl2anc LFilYAYxAuLuAxuY
39 24 34 sstrd LFilYAYxAuLuAxxY
40 38 39 unssd LFilYAYxAuLuAxuxY
41 ssun1 uux
42 41 a1i LFilYAYxAuLuAxuux
43 filss LFilYuLuxYuuxuxL
44 33 36 40 42 43 syl13anc LFilYAYxAuLuAxuxL
45 elrestr LFilYAVuxLuxAL𝑡A
46 33 35 44 45 syl3anc LFilYAYxAuLuAxuxAL𝑡A
47 32 46 eqeltrrd LFilYAYxAuLuAxxL𝑡A
48 47 rexlimdvaa LFilYAYxAuLuAxxL𝑡A
49 22 48 sylbid LFilYAYxAyL𝑡AyxxL𝑡A
50 49 ex LFilYAYxAyL𝑡AyxxL𝑡A
51 13 50 syl5 LFilYAYx𝒫AyL𝑡AyxxL𝑡A
52 51 ralrimiv LFilYAYx𝒫AyL𝑡AyxxL𝑡A
53 simpll LFilYAYzLuLLFilY
54 8 adantr LFilYAYzLuLAV
55 filin LFilYzLuLzuL
56 55 3expb LFilYzLuLzuL
57 56 adantlr LFilYAYzLuLzuL
58 elrestr LFilYAVzuLzuAL𝑡A
59 53 54 57 58 syl3anc LFilYAYzLuLzuAL𝑡A
60 59 ralrimivva LFilYAYzLuLzuAL𝑡A
61 vex zV
62 61 inex1 zAV
63 62 a1i LFilYAYzLzAV
64 elrest LFilYAVxL𝑡AzLx=zA
65 8 64 syldan LFilYAYxL𝑡AzLx=zA
66 15 a1i LFilYAYx=zAuLuAV
67 18 adantr LFilYAYx=zAyL𝑡AuLy=uA
68 ineq12 x=zAy=uAxy=zAuA
69 inindir zuA=zAuA
70 68 69 eqtr4di x=zAy=uAxy=zuA
71 70 adantll LFilYAYx=zAy=uAxy=zuA
72 71 eleq1d LFilYAYx=zAy=uAxyL𝑡AzuAL𝑡A
73 66 67 72 ralxfr2d LFilYAYx=zAyL𝑡AxyL𝑡AuLzuAL𝑡A
74 63 65 73 ralxfr2d LFilYAYxL𝑡AyL𝑡AxyL𝑡AzLuLzuAL𝑡A
75 60 74 mpbird LFilYAYxL𝑡AyL𝑡AxyL𝑡A
76 isfil2 L𝑡AFilAL𝑡A𝒫A¬L𝑡AAL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡A
77 restsspw L𝑡A𝒫A
78 3anass L𝑡A𝒫A¬L𝑡AAL𝑡AL𝑡A𝒫A¬L𝑡AAL𝑡A
79 77 78 mpbiran L𝑡A𝒫A¬L𝑡AAL𝑡A¬L𝑡AAL𝑡A
80 79 3anbi1i L𝑡A𝒫A¬L𝑡AAL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡A¬L𝑡AAL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡A
81 3anass ¬L𝑡AAL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡A¬L𝑡AAL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡A
82 76 80 81 3bitri L𝑡AFilA¬L𝑡AAL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡A
83 anass ¬L𝑡AAL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡A¬L𝑡AAL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡A
84 ancom ¬L𝑡AAL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡AAL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡A¬L𝑡A
85 82 83 84 3bitri L𝑡AFilAAL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡A¬L𝑡A
86 85 baib AL𝑡Ax𝒫AyL𝑡AyxxL𝑡AxL𝑡AyL𝑡AxyL𝑡AL𝑡AFilA¬L𝑡A
87 12 52 75 86 syl12anc LFilYAYL𝑡AFilA¬L𝑡A
88 nesym vA¬=vA
89 88 ralbii vLvAvL¬=vA
90 elrest LFilYAVL𝑡AvL=vA
91 8 90 syldan LFilYAYL𝑡AvL=vA
92 dfrex2 vL=vA¬vL¬=vA
93 91 92 bitrdi LFilYAYL𝑡A¬vL¬=vA
94 93 con2bid LFilYAYvL¬=vA¬L𝑡A
95 89 94 bitrid LFilYAYvLvA¬L𝑡A
96 87 95 bitr4d LFilYAYL𝑡AFilAvLvA