Metamath Proof Explorer


Theorem ubthlem3

Description: Lemma for ubth . Prove the reverse implication, using nmblolbi . (Contributed by Mario Carneiro, 11-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ubth.1 X = BaseSet U
ubth.2 N = norm CV W
ubthlem.3 D = IndMet U
ubthlem.4 J = MetOpen D
ubthlem.5 U CBan
ubthlem.6 W NrmCVec
ubthlem.7 φ T U BLnOp W
Assertion ubthlem3 φ x X c t T N t x c d t T U normOp OLD W t d

Proof

Step Hyp Ref Expression
1 ubth.1 X = BaseSet U
2 ubth.2 N = norm CV W
3 ubthlem.3 D = IndMet U
4 ubthlem.4 J = MetOpen D
5 ubthlem.5 U CBan
6 ubthlem.6 W NrmCVec
7 ubthlem.7 φ T U BLnOp W
8 fveq1 u = t u z = t z
9 8 fveq2d u = t N u z = N t z
10 9 breq1d u = t N u z d N t z d
11 10 cbvralvw u T N u z d t T N t z d
12 breq2 d = c N t z d N t z c
13 12 ralbidv d = c t T N t z d t T N t z c
14 11 13 syl5bb d = c u T N u z d t T N t z c
15 14 cbvrexvw d u T N u z d c t T N t z c
16 2fveq3 z = x N t z = N t x
17 16 breq1d z = x N t z c N t x c
18 17 rexralbidv z = x c t T N t z c c t T N t x c
19 15 18 syl5bb z = x d u T N u z d c t T N t x c
20 19 cbvralvw z X d u T N u z d x X c t T N t x c
21 7 adantr φ z X d u T N u z d T U BLnOp W
22 simpr φ z X d u T N u z d z X d u T N u z d
23 22 20 sylib φ z X d u T N u z d x X c t T N t x c
24 fveq1 u = t u d = t d
25 24 fveq2d u = t N u d = N t d
26 25 breq1d u = t N u d m N t d m
27 26 cbvralvw u T N u d m t T N t d m
28 2fveq3 d = z N t d = N t z
29 28 breq1d d = z N t d m N t z m
30 29 ralbidv d = z t T N t d m t T N t z m
31 27 30 syl5bb d = z u T N u d m t T N t z m
32 31 cbvrabv d X | u T N u d m = z X | t T N t z m
33 breq2 m = k N t z m N t z k
34 33 ralbidv m = k t T N t z m t T N t z k
35 34 rabbidv m = k z X | t T N t z m = z X | t T N t z k
36 32 35 eqtrid m = k d X | u T N u d m = z X | t T N t z k
37 36 cbvmptv m d X | u T N u d m = k z X | t T N t z k
38 1 2 3 4 5 6 21 23 37 ubthlem1 φ z X d u T N u z d n y X r + z X | y D z r m d X | u T N u d m n
39 7 ad3antrrr φ z X d u T N u z d n y X r + z X | y D z r m d X | u T N u d m n T U BLnOp W
40 23 ad2antrr φ z X d u T N u z d n y X r + z X | y D z r m d X | u T N u d m n x X c t T N t x c
41 simplrl φ z X d u T N u z d n y X r + z X | y D z r m d X | u T N u d m n n
42 simplrr φ z X d u T N u z d n y X r + z X | y D z r m d X | u T N u d m n y X
43 simprl φ z X d u T N u z d n y X r + z X | y D z r m d X | u T N u d m n r +
44 simprr φ z X d u T N u z d n y X r + z X | y D z r m d X | u T N u d m n z X | y D z r m d X | u T N u d m n
45 1 2 3 4 5 6 39 40 37 41 42 43 44 ubthlem2 φ z X d u T N u z d n y X r + z X | y D z r m d X | u T N u d m n d t T U normOp OLD W t d
46 45 expr φ z X d u T N u z d n y X r + z X | y D z r m d X | u T N u d m n d t T U normOp OLD W t d
47 46 rexlimdva φ z X d u T N u z d n y X r + z X | y D z r m d X | u T N u d m n d t T U normOp OLD W t d
48 47 rexlimdvva φ z X d u T N u z d n y X r + z X | y D z r m d X | u T N u d m n d t T U normOp OLD W t d
49 38 48 mpd φ z X d u T N u z d d t T U normOp OLD W t d
50 49 ex φ z X d u T N u z d d t T U normOp OLD W t d
51 20 50 syl5bir φ x X c t T N t x c d t T U normOp OLD W t d
52 simpr φ d d
53 bnnv U CBan U NrmCVec
54 5 53 ax-mp U NrmCVec
55 eqid norm CV U = norm CV U
56 1 55 nvcl U NrmCVec x X norm CV U x
57 54 56 mpan x X norm CV U x
58 remulcl d norm CV U x d norm CV U x
59 52 57 58 syl2an φ d x X d norm CV U x
60 7 sselda φ t T t U BLnOp W
61 60 adantlr φ d t T t U BLnOp W
62 61 ad2ant2r φ d x X t T U normOp OLD W t d t U BLnOp W
63 eqid BaseSet W = BaseSet W
64 eqid U BLnOp W = U BLnOp W
65 1 63 64 blof U NrmCVec W NrmCVec t U BLnOp W t : X BaseSet W
66 54 6 65 mp3an12 t U BLnOp W t : X BaseSet W
67 62 66 syl φ d x X t T U normOp OLD W t d t : X BaseSet W
68 simplr φ d x X t T U normOp OLD W t d x X
69 67 68 ffvelrnd φ d x X t T U normOp OLD W t d t x BaseSet W
70 63 2 nvcl W NrmCVec t x BaseSet W N t x
71 6 70 mpan t x BaseSet W N t x
72 69 71 syl φ d x X t T U normOp OLD W t d N t x
73 eqid U normOp OLD W = U normOp OLD W
74 1 63 73 nmoxr U NrmCVec W NrmCVec t : X BaseSet W U normOp OLD W t *
75 54 6 74 mp3an12 t : X BaseSet W U normOp OLD W t *
76 67 75 syl φ d x X t T U normOp OLD W t d U normOp OLD W t *
77 simpllr φ d x X t T U normOp OLD W t d d
78 1 63 73 nmogtmnf U NrmCVec W NrmCVec t : X BaseSet W −∞ < U normOp OLD W t
79 54 6 78 mp3an12 t : X BaseSet W −∞ < U normOp OLD W t
80 67 79 syl φ d x X t T U normOp OLD W t d −∞ < U normOp OLD W t
81 simprr φ d x X t T U normOp OLD W t d U normOp OLD W t d
82 xrre U normOp OLD W t * d −∞ < U normOp OLD W t U normOp OLD W t d U normOp OLD W t
83 76 77 80 81 82 syl22anc φ d x X t T U normOp OLD W t d U normOp OLD W t
84 57 ad2antlr φ d x X t T U normOp OLD W t d norm CV U x
85 remulcl U normOp OLD W t norm CV U x U normOp OLD W t norm CV U x
86 83 84 85 syl2anc φ d x X t T U normOp OLD W t d U normOp OLD W t norm CV U x
87 59 adantr φ d x X t T U normOp OLD W t d d norm CV U x
88 1 55 2 73 64 54 6 nmblolbi t U BLnOp W x X N t x U normOp OLD W t norm CV U x
89 62 68 88 syl2anc φ d x X t T U normOp OLD W t d N t x U normOp OLD W t norm CV U x
90 1 55 nvge0 U NrmCVec x X 0 norm CV U x
91 54 90 mpan x X 0 norm CV U x
92 57 91 jca x X norm CV U x 0 norm CV U x
93 92 ad2antlr φ d x X t T U normOp OLD W t d norm CV U x 0 norm CV U x
94 lemul1a U normOp OLD W t d norm CV U x 0 norm CV U x U normOp OLD W t d U normOp OLD W t norm CV U x d norm CV U x
95 83 77 93 81 94 syl31anc φ d x X t T U normOp OLD W t d U normOp OLD W t norm CV U x d norm CV U x
96 72 86 87 89 95 letrd φ d x X t T U normOp OLD W t d N t x d norm CV U x
97 96 expr φ d x X t T U normOp OLD W t d N t x d norm CV U x
98 97 ralimdva φ d x X t T U normOp OLD W t d t T N t x d norm CV U x
99 brralrspcev d norm CV U x t T N t x d norm CV U x c t T N t x c
100 59 98 99 syl6an φ d x X t T U normOp OLD W t d c t T N t x c
101 100 ralrimdva φ d t T U normOp OLD W t d x X c t T N t x c
102 101 rexlimdva φ d t T U normOp OLD W t d x X c t T N t x c
103 51 102 impbid φ x X c t T N t x c d t T U normOp OLD W t d