Metamath Proof Explorer


Theorem ubthlem3

Description: Lemma for ubth . Prove the reverse implication, using nmblolbi . (Contributed by Mario Carneiro, 11-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ubth.1 X=BaseSetU
ubth.2 N=normCVW
ubthlem.3 D=IndMetU
ubthlem.4 J=MetOpenD
ubthlem.5 UCBan
ubthlem.6 WNrmCVec
ubthlem.7 φTUBLnOpW
Assertion ubthlem3 φxXctTNtxcdtTUnormOpOLDWtd

Proof

Step Hyp Ref Expression
1 ubth.1 X=BaseSetU
2 ubth.2 N=normCVW
3 ubthlem.3 D=IndMetU
4 ubthlem.4 J=MetOpenD
5 ubthlem.5 UCBan
6 ubthlem.6 WNrmCVec
7 ubthlem.7 φTUBLnOpW
8 fveq1 u=tuz=tz
9 8 fveq2d u=tNuz=Ntz
10 9 breq1d u=tNuzdNtzd
11 10 cbvralvw uTNuzdtTNtzd
12 breq2 d=cNtzdNtzc
13 12 ralbidv d=ctTNtzdtTNtzc
14 11 13 bitrid d=cuTNuzdtTNtzc
15 14 cbvrexvw duTNuzdctTNtzc
16 2fveq3 z=xNtz=Ntx
17 16 breq1d z=xNtzcNtxc
18 17 rexralbidv z=xctTNtzcctTNtxc
19 15 18 bitrid z=xduTNuzdctTNtxc
20 19 cbvralvw zXduTNuzdxXctTNtxc
21 7 adantr φzXduTNuzdTUBLnOpW
22 simpr φzXduTNuzdzXduTNuzd
23 22 20 sylib φzXduTNuzdxXctTNtxc
24 fveq1 u=tud=td
25 24 fveq2d u=tNud=Ntd
26 25 breq1d u=tNudmNtdm
27 26 cbvralvw uTNudmtTNtdm
28 2fveq3 d=zNtd=Ntz
29 28 breq1d d=zNtdmNtzm
30 29 ralbidv d=ztTNtdmtTNtzm
31 27 30 bitrid d=zuTNudmtTNtzm
32 31 cbvrabv dX|uTNudm=zX|tTNtzm
33 breq2 m=kNtzmNtzk
34 33 ralbidv m=ktTNtzmtTNtzk
35 34 rabbidv m=kzX|tTNtzm=zX|tTNtzk
36 32 35 eqtrid m=kdX|uTNudm=zX|tTNtzk
37 36 cbvmptv mdX|uTNudm=kzX|tTNtzk
38 1 2 3 4 5 6 21 23 37 ubthlem1 φzXduTNuzdnyXr+zX|yDzrmdX|uTNudmn
39 7 ad3antrrr φzXduTNuzdnyXr+zX|yDzrmdX|uTNudmnTUBLnOpW
40 23 ad2antrr φzXduTNuzdnyXr+zX|yDzrmdX|uTNudmnxXctTNtxc
41 simplrl φzXduTNuzdnyXr+zX|yDzrmdX|uTNudmnn
42 simplrr φzXduTNuzdnyXr+zX|yDzrmdX|uTNudmnyX
43 simprl φzXduTNuzdnyXr+zX|yDzrmdX|uTNudmnr+
44 simprr φzXduTNuzdnyXr+zX|yDzrmdX|uTNudmnzX|yDzrmdX|uTNudmn
45 1 2 3 4 5 6 39 40 37 41 42 43 44 ubthlem2 φzXduTNuzdnyXr+zX|yDzrmdX|uTNudmndtTUnormOpOLDWtd
46 45 expr φzXduTNuzdnyXr+zX|yDzrmdX|uTNudmndtTUnormOpOLDWtd
47 46 rexlimdva φzXduTNuzdnyXr+zX|yDzrmdX|uTNudmndtTUnormOpOLDWtd
48 47 rexlimdvva φzXduTNuzdnyXr+zX|yDzrmdX|uTNudmndtTUnormOpOLDWtd
49 38 48 mpd φzXduTNuzddtTUnormOpOLDWtd
50 49 ex φzXduTNuzddtTUnormOpOLDWtd
51 20 50 biimtrrid φxXctTNtxcdtTUnormOpOLDWtd
52 simpr φdd
53 bnnv UCBanUNrmCVec
54 5 53 ax-mp UNrmCVec
55 eqid normCVU=normCVU
56 1 55 nvcl UNrmCVecxXnormCVUx
57 54 56 mpan xXnormCVUx
58 remulcl dnormCVUxdnormCVUx
59 52 57 58 syl2an φdxXdnormCVUx
60 7 sselda φtTtUBLnOpW
61 60 adantlr φdtTtUBLnOpW
62 61 ad2ant2r φdxXtTUnormOpOLDWtdtUBLnOpW
63 eqid BaseSetW=BaseSetW
64 eqid UBLnOpW=UBLnOpW
65 1 63 64 blof UNrmCVecWNrmCVectUBLnOpWt:XBaseSetW
66 54 6 65 mp3an12 tUBLnOpWt:XBaseSetW
67 62 66 syl φdxXtTUnormOpOLDWtdt:XBaseSetW
68 simplr φdxXtTUnormOpOLDWtdxX
69 67 68 ffvelcdmd φdxXtTUnormOpOLDWtdtxBaseSetW
70 63 2 nvcl WNrmCVectxBaseSetWNtx
71 6 70 mpan txBaseSetWNtx
72 69 71 syl φdxXtTUnormOpOLDWtdNtx
73 eqid UnormOpOLDW=UnormOpOLDW
74 1 63 73 nmoxr UNrmCVecWNrmCVect:XBaseSetWUnormOpOLDWt*
75 54 6 74 mp3an12 t:XBaseSetWUnormOpOLDWt*
76 67 75 syl φdxXtTUnormOpOLDWtdUnormOpOLDWt*
77 simpllr φdxXtTUnormOpOLDWtdd
78 1 63 73 nmogtmnf UNrmCVecWNrmCVect:XBaseSetW−∞<UnormOpOLDWt
79 54 6 78 mp3an12 t:XBaseSetW−∞<UnormOpOLDWt
80 67 79 syl φdxXtTUnormOpOLDWtd−∞<UnormOpOLDWt
81 simprr φdxXtTUnormOpOLDWtdUnormOpOLDWtd
82 xrre UnormOpOLDWt*d−∞<UnormOpOLDWtUnormOpOLDWtdUnormOpOLDWt
83 76 77 80 81 82 syl22anc φdxXtTUnormOpOLDWtdUnormOpOLDWt
84 57 ad2antlr φdxXtTUnormOpOLDWtdnormCVUx
85 remulcl UnormOpOLDWtnormCVUxUnormOpOLDWtnormCVUx
86 83 84 85 syl2anc φdxXtTUnormOpOLDWtdUnormOpOLDWtnormCVUx
87 59 adantr φdxXtTUnormOpOLDWtddnormCVUx
88 1 55 2 73 64 54 6 nmblolbi tUBLnOpWxXNtxUnormOpOLDWtnormCVUx
89 62 68 88 syl2anc φdxXtTUnormOpOLDWtdNtxUnormOpOLDWtnormCVUx
90 1 55 nvge0 UNrmCVecxX0normCVUx
91 54 90 mpan xX0normCVUx
92 57 91 jca xXnormCVUx0normCVUx
93 92 ad2antlr φdxXtTUnormOpOLDWtdnormCVUx0normCVUx
94 lemul1a UnormOpOLDWtdnormCVUx0normCVUxUnormOpOLDWtdUnormOpOLDWtnormCVUxdnormCVUx
95 83 77 93 81 94 syl31anc φdxXtTUnormOpOLDWtdUnormOpOLDWtnormCVUxdnormCVUx
96 72 86 87 89 95 letrd φdxXtTUnormOpOLDWtdNtxdnormCVUx
97 96 expr φdxXtTUnormOpOLDWtdNtxdnormCVUx
98 97 ralimdva φdxXtTUnormOpOLDWtdtTNtxdnormCVUx
99 brralrspcev dnormCVUxtTNtxdnormCVUxctTNtxc
100 59 98 99 syl6an φdxXtTUnormOpOLDWtdctTNtxc
101 100 ralrimdva φdtTUnormOpOLDWtdxXctTNtxc
102 101 rexlimdva φdtTUnormOpOLDWtdxXctTNtxc
103 51 102 impbid φxXctTNtxcdtTUnormOpOLDWtd