Metamath Proof Explorer


Theorem ushgredgedg

Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 11-Dec-2020)

Ref Expression
Hypotheses ushgredgedg.e E=EdgG
ushgredgedg.i I=iEdgG
ushgredgedg.v V=VtxG
ushgredgedg.a A=idomI|NIi
ushgredgedg.b B=eE|Ne
ushgredgedg.f F=xAIx
Assertion ushgredgedg GUSHGraphNVF:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 ushgredgedg.e E=EdgG
2 ushgredgedg.i I=iEdgG
3 ushgredgedg.v V=VtxG
4 ushgredgedg.a A=idomI|NIi
5 ushgredgedg.b B=eE|Ne
6 ushgredgedg.f F=xAIx
7 eqid VtxG=VtxG
8 7 2 ushgrf GUSHGraphI:domI1-1𝒫VtxG
9 8 adantr GUSHGraphNVI:domI1-1𝒫VtxG
10 ssrab2 idomI|NIidomI
11 f1ores I:domI1-1𝒫VtxGidomI|NIidomIIidomI|NIi:idomI|NIi1-1 ontoIidomI|NIi
12 9 10 11 sylancl GUSHGraphNVIidomI|NIi:idomI|NIi1-1 ontoIidomI|NIi
13 4 a1i GUSHGraphNVA=idomI|NIi
14 eqidd GUSHGraphNVxAIx=Ix
15 13 14 mpteq12dva GUSHGraphNVxAIx=xidomI|NIiIx
16 6 15 eqtrid GUSHGraphNVF=xidomI|NIiIx
17 f1f I:domI1-1𝒫VtxGI:domI𝒫VtxG
18 8 17 syl GUSHGraphI:domI𝒫VtxG
19 10 a1i GUSHGraphidomI|NIidomI
20 18 19 feqresmpt GUSHGraphIidomI|NIi=xidomI|NIiIx
21 20 adantr GUSHGraphNVIidomI|NIi=xidomI|NIiIx
22 21 eqcomd GUSHGraphNVxidomI|NIiIx=IidomI|NIi
23 16 22 eqtrd GUSHGraphNVF=IidomI|NIi
24 ushgruhgr GUSHGraphGUHGraph
25 eqid iEdgG=iEdgG
26 25 uhgrfun GUHGraphFuniEdgG
27 24 26 syl GUSHGraphFuniEdgG
28 2 funeqi FunIFuniEdgG
29 27 28 sylibr GUSHGraphFunI
30 29 adantr GUSHGraphNVFunI
31 dfimafn FunIidomI|NIidomIIidomI|NIi=e|jidomI|NIiIj=e
32 30 10 31 sylancl GUSHGraphNVIidomI|NIi=e|jidomI|NIiIj=e
33 fveq2 i=jIi=Ij
34 33 eleq2d i=jNIiNIj
35 34 elrab jidomI|NIijdomINIj
36 simpl jdomINIjjdomI
37 fvelrn FunIjdomIIjranI
38 2 eqcomi iEdgG=I
39 38 rneqi raniEdgG=ranI
40 39 eleq2i IjraniEdgGIjranI
41 37 40 sylibr FunIjdomIIjraniEdgG
42 30 36 41 syl2an GUSHGraphNVjdomINIjIjraniEdgG
43 42 3adant3 GUSHGraphNVjdomINIjIj=fIjraniEdgG
44 eleq1 f=IjfraniEdgGIjraniEdgG
45 44 eqcoms Ij=ffraniEdgGIjraniEdgG
46 45 3ad2ant3 GUSHGraphNVjdomINIjIj=ffraniEdgGIjraniEdgG
47 43 46 mpbird GUSHGraphNVjdomINIjIj=ffraniEdgG
48 edgval EdgG=raniEdgG
49 48 a1i GUSHGraphEdgG=raniEdgG
50 1 49 eqtrid GUSHGraphE=raniEdgG
51 50 eleq2d GUSHGraphfEfraniEdgG
52 51 adantr GUSHGraphNVfEfraniEdgG
53 52 3ad2ant1 GUSHGraphNVjdomINIjIj=ffEfraniEdgG
54 47 53 mpbird GUSHGraphNVjdomINIjIj=ffE
55 eleq2 Ij=fNIjNf
56 55 biimpcd NIjIj=fNf
57 56 adantl jdomINIjIj=fNf
58 57 a1i GUSHGraphNVjdomINIjIj=fNf
59 58 3imp GUSHGraphNVjdomINIjIj=fNf
60 54 59 jca GUSHGraphNVjdomINIjIj=ffENf
61 60 3exp GUSHGraphNVjdomINIjIj=ffENf
62 35 61 biimtrid GUSHGraphNVjidomI|NIiIj=ffENf
63 62 rexlimdv GUSHGraphNVjidomI|NIiIj=ffENf
64 27 funfnd GUSHGraphiEdgGFndomiEdgG
65 fvelrnb iEdgGFndomiEdgGfraniEdgGjdomiEdgGiEdgGj=f
66 64 65 syl GUSHGraphfraniEdgGjdomiEdgGiEdgGj=f
67 38 dmeqi domiEdgG=domI
68 67 eleq2i jdomiEdgGjdomI
69 68 biimpi jdomiEdgGjdomI
70 69 adantr jdomiEdgGiEdgGj=fjdomI
71 70 adantl GUSHGraphNfjdomiEdgGiEdgGj=fjdomI
72 38 fveq1i iEdgGj=Ij
73 72 eqeq2i f=iEdgGjf=Ij
74 73 biimpi f=iEdgGjf=Ij
75 74 eqcoms iEdgGj=ff=Ij
76 75 eleq2d iEdgGj=fNfNIj
77 76 biimpcd NfiEdgGj=fNIj
78 77 adantl GUSHGraphNfiEdgGj=fNIj
79 78 adantld GUSHGraphNfjdomiEdgGiEdgGj=fNIj
80 79 imp GUSHGraphNfjdomiEdgGiEdgGj=fNIj
81 71 80 jca GUSHGraphNfjdomiEdgGiEdgGj=fjdomINIj
82 81 35 sylibr GUSHGraphNfjdomiEdgGiEdgGj=fjidomI|NIi
83 72 eqeq1i iEdgGj=fIj=f
84 83 biimpi iEdgGj=fIj=f
85 84 adantl jdomiEdgGiEdgGj=fIj=f
86 85 adantl GUSHGraphNfjdomiEdgGiEdgGj=fIj=f
87 82 86 jca GUSHGraphNfjdomiEdgGiEdgGj=fjidomI|NIiIj=f
88 87 ex GUSHGraphNfjdomiEdgGiEdgGj=fjidomI|NIiIj=f
89 88 reximdv2 GUSHGraphNfjdomiEdgGiEdgGj=fjidomI|NIiIj=f
90 89 ex GUSHGraphNfjdomiEdgGiEdgGj=fjidomI|NIiIj=f
91 90 com23 GUSHGraphjdomiEdgGiEdgGj=fNfjidomI|NIiIj=f
92 66 91 sylbid GUSHGraphfraniEdgGNfjidomI|NIiIj=f
93 51 92 sylbid GUSHGraphfENfjidomI|NIiIj=f
94 93 impd GUSHGraphfENfjidomI|NIiIj=f
95 94 adantr GUSHGraphNVfENfjidomI|NIiIj=f
96 63 95 impbid GUSHGraphNVjidomI|NIiIj=ffENf
97 vex fV
98 eqeq2 e=fIj=eIj=f
99 98 rexbidv e=fjidomI|NIiIj=ejidomI|NIiIj=f
100 97 99 elab fe|jidomI|NIiIj=ejidomI|NIiIj=f
101 eleq2 e=fNeNf
102 101 5 elrab2 fBfENf
103 96 100 102 3bitr4g GUSHGraphNVfe|jidomI|NIiIj=efB
104 103 eqrdv GUSHGraphNVe|jidomI|NIiIj=e=B
105 32 104 eqtrd GUSHGraphNVIidomI|NIi=B
106 105 eqcomd GUSHGraphNVB=IidomI|NIi
107 23 13 106 f1oeq123d GUSHGraphNVF:A1-1 ontoBIidomI|NIi:idomI|NIi1-1 ontoIidomI|NIi
108 12 107 mpbird GUSHGraphNVF:A1-1 ontoB