Metamath Proof Explorer


Theorem weiunlem2

Description: Lemma for weiunpo , weiunso , and weiunse . (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypothesis weiunlem2.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
Assertion weiunlem2 R We A R Se A F : x A B A t x A B t F t / x B t x A B s A t s / x B ¬ s R F t

Proof

Step Hyp Ref Expression
1 weiunlem2.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
2 1 weiunlem1 R We A R Se A F : x A B A w x A B w F w / x B w x A B v A w v / x B ¬ v R F w
3 biid F : x A B A F : x A B A
4 nfv t w F w / x B
5 nfmpt1 _ w w x A B ι u x A | w B | v x A | w B ¬ v R u
6 1 5 nfcxfr _ w F
7 nfcv _ w t
8 6 7 nffv _ w F t
9 nfcv _ w B
10 8 9 nfcsbw _ w F t / x B
11 10 nfcri w t F t / x B
12 id w = t w = t
13 fveq2 w = t F w = F t
14 13 csbeq1d w = t F w / x B = F t / x B
15 12 14 eleq12d w = t w F w / x B t F t / x B
16 4 11 15 cbvralw w x A B w F w / x B t x A B t F t / x B
17 nfv t v A w v / x B ¬ v R F w
18 nfcv _ w A
19 nfv w t s / x B
20 nfcv _ w s
21 nfcv _ w R
22 20 21 8 nfbr w s R F t
23 22 nfn w ¬ s R F t
24 19 23 nfim w t s / x B ¬ s R F t
25 18 24 nfralw w s A t s / x B ¬ s R F t
26 nfv s w v / x B ¬ v R F w
27 nfv v w s / x B
28 nfcv _ v s
29 nfcv _ v R
30 nfcv _ v x A B
31 nfra1 v v x A | w B ¬ v R u
32 nfcv _ v x A | w B
33 31 32 nfriota _ v ι u x A | w B | v x A | w B ¬ v R u
34 30 33 nfmpt _ v w x A B ι u x A | w B | v x A | w B ¬ v R u
35 1 34 nfcxfr _ v F
36 nfcv _ v w
37 35 36 nffv _ v F w
38 28 29 37 nfbr v s R F w
39 38 nfn v ¬ s R F w
40 27 39 nfim v w s / x B ¬ s R F w
41 csbeq1 v = s v / x B = s / x B
42 41 eleq2d v = s w v / x B w s / x B
43 breq1 v = s v R F w s R F w
44 43 notbid v = s ¬ v R F w ¬ s R F w
45 42 44 imbi12d v = s w v / x B ¬ v R F w w s / x B ¬ s R F w
46 26 40 45 cbvralw v A w v / x B ¬ v R F w s A w s / x B ¬ s R F w
47 eleq1w w = t w s / x B t s / x B
48 13 breq2d w = t s R F w s R F t
49 48 notbid w = t ¬ s R F w ¬ s R F t
50 47 49 imbi12d w = t w s / x B ¬ s R F w t s / x B ¬ s R F t
51 50 ralbidv w = t s A w s / x B ¬ s R F w s A t s / x B ¬ s R F t
52 46 51 bitrid w = t v A w v / x B ¬ v R F w s A t s / x B ¬ s R F t
53 17 25 52 cbvralw w x A B v A w v / x B ¬ v R F w t x A B s A t s / x B ¬ s R F t
54 3 16 53 3anbi123i F : x A B A w x A B w F w / x B w x A B v A w v / x B ¬ v R F w F : x A B A t x A B t F t / x B t x A B s A t s / x B ¬ s R F t
55 2 54 sylib R We A R Se A F : x A B A t x A B t F t / x B t x A B s A t s / x B ¬ s R F t