Metamath Proof Explorer


Theorem wunex2

Description: Construct a weak universe from a given set. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wunex2.f F = rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω
wunex2.u U = ran F
Assertion wunex2 A V U WUni A U

Proof

Step Hyp Ref Expression
1 wunex2.f F = rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω
2 wunex2.u U = ran F
3 2 eleq2i a U a ran F
4 frfnom rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω Fn ω
5 1 fneq1i F Fn ω rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω Fn ω
6 4 5 mpbir F Fn ω
7 fnunirn F Fn ω a ran F m ω a F m
8 6 7 ax-mp a ran F m ω a F m
9 3 8 bitri a U m ω a F m
10 elssuni a F m a F m
11 10 ad2antll A V m ω a F m a F m
12 ssun2 F m F m F m
13 ssun1 F m F m F m F m u F m 𝒫 u u ran v F m u v
14 12 13 sstri F m F m F m u F m 𝒫 u u ran v F m u v
15 11 14 sstrdi A V m ω a F m a F m F m u F m 𝒫 u u ran v F m u v
16 simprl A V m ω a F m m ω
17 fvex F m V
18 17 uniex F m V
19 17 18 unex F m F m V
20 prex 𝒫 u u V
21 17 mptex v F m u v V
22 21 rnex ran v F m u v V
23 20 22 unex 𝒫 u u ran v F m u v V
24 17 23 iunex u F m 𝒫 u u ran v F m u v V
25 19 24 unex F m F m u F m 𝒫 u u ran v F m u v V
26 id w = z w = z
27 unieq w = z w = z
28 26 27 uneq12d w = z w w = z z
29 pweq u = x 𝒫 u = 𝒫 x
30 unieq u = x u = x
31 29 30 preq12d u = x 𝒫 u u = 𝒫 x x
32 preq2 v = y u v = u y
33 32 cbvmptv v w u v = y w u y
34 preq1 u = x u y = x y
35 34 mpteq2dv u = x y w u y = y w x y
36 33 35 eqtrid u = x v w u v = y w x y
37 36 rneqd u = x ran v w u v = ran y w x y
38 31 37 uneq12d u = x 𝒫 u u ran v w u v = 𝒫 x x ran y w x y
39 38 cbviunv u w 𝒫 u u ran v w u v = x w 𝒫 x x ran y w x y
40 mpteq1 w = z y w x y = y z x y
41 40 rneqd w = z ran y w x y = ran y z x y
42 41 uneq2d w = z 𝒫 x x ran y w x y = 𝒫 x x ran y z x y
43 26 42 iuneq12d w = z x w 𝒫 x x ran y w x y = x z 𝒫 x x ran y z x y
44 39 43 eqtrid w = z u w 𝒫 u u ran v w u v = x z 𝒫 x x ran y z x y
45 28 44 uneq12d w = z w w u w 𝒫 u u ran v w u v = z z x z 𝒫 x x ran y z x y
46 id w = F m w = F m
47 unieq w = F m w = F m
48 46 47 uneq12d w = F m w w = F m F m
49 mpteq1 w = F m v w u v = v F m u v
50 49 rneqd w = F m ran v w u v = ran v F m u v
51 50 uneq2d w = F m 𝒫 u u ran v w u v = 𝒫 u u ran v F m u v
52 46 51 iuneq12d w = F m u w 𝒫 u u ran v w u v = u F m 𝒫 u u ran v F m u v
53 48 52 uneq12d w = F m w w u w 𝒫 u u ran v w u v = F m F m u F m 𝒫 u u ran v F m u v
54 1 45 53 frsucmpt2 m ω F m F m u F m 𝒫 u u ran v F m u v V F suc m = F m F m u F m 𝒫 u u ran v F m u v
55 16 25 54 sylancl A V m ω a F m F suc m = F m F m u F m 𝒫 u u ran v F m u v
56 15 55 sseqtrrd A V m ω a F m a F suc m
57 fvssunirn F suc m ran F
58 57 2 sseqtrri F suc m U
59 56 58 sstrdi A V m ω a F m a U
60 59 rexlimdvaa A V m ω a F m a U
61 9 60 syl5bi A V a U a U
62 61 ralrimiv A V a U a U
63 dftr3 Tr U a U a U
64 62 63 sylibr A V Tr U
65 1on 1 𝑜 On
66 unexg A V 1 𝑜 On A 1 𝑜 V
67 65 66 mpan2 A V A 1 𝑜 V
68 1 fveq1i F = rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω
69 fr0g A 1 𝑜 V rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω = A 1 𝑜
70 68 69 eqtrid A 1 𝑜 V F = A 1 𝑜
71 67 70 syl A V F = A 1 𝑜
72 fvssunirn F ran F
73 72 2 sseqtrri F U
74 71 73 eqsstrrdi A V A 1 𝑜 U
75 74 unssbd A V 1 𝑜 U
76 1n0 1 𝑜
77 ssn0 1 𝑜 U 1 𝑜 U
78 75 76 77 sylancl A V U
79 pweq u = a 𝒫 u = 𝒫 a
80 unieq u = a u = a
81 79 80 preq12d u = a 𝒫 u u = 𝒫 a a
82 preq1 u = a u v = a v
83 82 mpteq2dv u = a v F m u v = v F m a v
84 83 rneqd u = a ran v F m u v = ran v F m a v
85 81 84 uneq12d u = a 𝒫 u u ran v F m u v = 𝒫 a a ran v F m a v
86 85 ssiun2s a F m 𝒫 a a ran v F m a v u F m 𝒫 u u ran v F m u v
87 86 ad2antll A V m ω a F m 𝒫 a a ran v F m a v u F m 𝒫 u u ran v F m u v
88 ssun2 u F m 𝒫 u u ran v F m u v F m F m u F m 𝒫 u u ran v F m u v
89 88 55 sseqtrrid A V m ω a F m u F m 𝒫 u u ran v F m u v F suc m
90 89 58 sstrdi A V m ω a F m u F m 𝒫 u u ran v F m u v U
91 87 90 sstrd A V m ω a F m 𝒫 a a ran v F m a v U
92 91 unssad A V m ω a F m 𝒫 a a U
93 vpwex 𝒫 a V
94 vuniex a V
95 93 94 prss 𝒫 a U a U 𝒫 a a U
96 92 95 sylibr A V m ω a F m 𝒫 a U a U
97 96 simprd A V m ω a F m a U
98 96 simpld A V m ω a F m 𝒫 a U
99 2 eleq2i b U b ran F
100 fnunirn F Fn ω b ran F n ω b F n
101 6 100 ax-mp b ran F n ω b F n
102 99 101 bitri b U n ω b F n
103 ordom Ord ω
104 simplrl A V m ω a F m n ω b F n m ω
105 simprl A V m ω a F m n ω b F n n ω
106 ordunel Ord ω m ω n ω m n ω
107 103 104 105 106 mp3an2i A V m ω a F m n ω b F n m n ω
108 ssun1 m m n
109 fveq2 k = m F k = F m
110 109 sseq2d k = m F m F k F m F m
111 fveq2 k = i F k = F i
112 111 sseq2d k = i F m F k F m F i
113 fveq2 k = suc i F k = F suc i
114 113 sseq2d k = suc i F m F k F m F suc i
115 fveq2 k = m n F k = F m n
116 115 sseq2d k = m n F m F k F m F m n
117 ssidd m ω F m F m
118 fveq2 m = i F m = F i
119 suceq m = i suc m = suc i
120 119 fveq2d m = i F suc m = F suc i
121 118 120 sseq12d m = i F m F suc m F i F suc i
122 ssun1 F m F m F m
123 122 13 sstri F m F m F m u F m 𝒫 u u ran v F m u v
124 25 54 mpan2 m ω F suc m = F m F m u F m 𝒫 u u ran v F m u v
125 123 124 sseqtrrid m ω F m F suc m
126 121 125 vtoclga i ω F i F suc i
127 126 ad2antrr i ω m ω m i F i F suc i
128 sstr2 F m F i F i F suc i F m F suc i
129 127 128 syl5com i ω m ω m i F m F i F m F suc i
130 110 112 114 116 117 129 findsg m n ω m ω m m n F m F m n
131 108 130 mpan2 m n ω m ω F m F m n
132 107 104 131 syl2anc A V m ω a F m n ω b F n F m F m n
133 simplrr A V m ω a F m n ω b F n a F m
134 132 133 sseldd A V m ω a F m n ω b F n a F m n
135 82 mpteq2dv u = a v F m n u v = v F m n a v
136 135 rneqd u = a ran v F m n u v = ran v F m n a v
137 81 136 uneq12d u = a 𝒫 u u ran v F m n u v = 𝒫 a a ran v F m n a v
138 137 ssiun2s a F m n 𝒫 a a ran v F m n a v u F m n 𝒫 u u ran v F m n u v
139 134 138 syl A V m ω a F m n ω b F n 𝒫 a a ran v F m n a v u F m n 𝒫 u u ran v F m n u v
140 ssun2 u F m n 𝒫 u u ran v F m n u v F m n F m n u F m n 𝒫 u u ran v F m n u v
141 fvex F m n V
142 141 uniex F m n V
143 141 142 unex F m n F m n V
144 141 mptex v F m n u v V
145 144 rnex ran v F m n u v V
146 20 145 unex 𝒫 u u ran v F m n u v V
147 141 146 iunex u F m n 𝒫 u u ran v F m n u v V
148 143 147 unex F m n F m n u F m n 𝒫 u u ran v F m n u v V
149 id w = F m n w = F m n
150 unieq w = F m n w = F m n
151 149 150 uneq12d w = F m n w w = F m n F m n
152 mpteq1 w = F m n v w u v = v F m n u v
153 152 rneqd w = F m n ran v w u v = ran v F m n u v
154 153 uneq2d w = F m n 𝒫 u u ran v w u v = 𝒫 u u ran v F m n u v
155 149 154 iuneq12d w = F m n u w 𝒫 u u ran v w u v = u F m n 𝒫 u u ran v F m n u v
156 151 155 uneq12d w = F m n w w u w 𝒫 u u ran v w u v = F m n F m n u F m n 𝒫 u u ran v F m n u v
157 1 45 156 frsucmpt2 m n ω F m n F m n u F m n 𝒫 u u ran v F m n u v V F suc m n = F m n F m n u F m n 𝒫 u u ran v F m n u v
158 107 148 157 sylancl A V m ω a F m n ω b F n F suc m n = F m n F m n u F m n 𝒫 u u ran v F m n u v
159 140 158 sseqtrrid A V m ω a F m n ω b F n u F m n 𝒫 u u ran v F m n u v F suc m n
160 fvssunirn F suc m n ran F
161 160 2 sseqtrri F suc m n U
162 159 161 sstrdi A V m ω a F m n ω b F n u F m n 𝒫 u u ran v F m n u v U
163 139 162 sstrd A V m ω a F m n ω b F n 𝒫 a a ran v F m n a v U
164 163 unssbd A V m ω a F m n ω b F n ran v F m n a v U
165 ssun2 n m n
166 id i = m n i = m n
167 165 166 sseqtrrid i = m n n i
168 167 biantrud i = m n n ω n ω n i
169 168 bicomd i = m n n ω n i n ω
170 fveq2 i = m n F i = F m n
171 170 sseq2d i = m n F n F i F n F m n
172 169 171 imbi12d i = m n n ω n i F n F i n ω F n F m n
173 eleq1w m = n m ω n ω
174 173 anbi2d m = n i ω m ω i ω n ω
175 sseq1 m = n m i n i
176 174 175 anbi12d m = n i ω m ω m i i ω n ω n i
177 fveq2 m = n F m = F n
178 177 sseq1d m = n F m F i F n F i
179 176 178 imbi12d m = n i ω m ω m i F m F i i ω n ω n i F n F i
180 110 112 114 112 117 129 findsg i ω m ω m i F m F i
181 179 180 chvarvv i ω n ω n i F n F i
182 181 expl i ω n ω n i F n F i
183 172 182 vtoclga m n ω n ω F n F m n
184 107 105 183 sylc A V m ω a F m n ω b F n F n F m n
185 simprr A V m ω a F m n ω b F n b F n
186 184 185 sseldd A V m ω a F m n ω b F n b F m n
187 prex a b V
188 eqid v F m n a v = v F m n a v
189 preq2 v = b a v = a b
190 188 189 elrnmpt1s b F m n a b V a b ran v F m n a v
191 186 187 190 sylancl A V m ω a F m n ω b F n a b ran v F m n a v
192 164 191 sseldd A V m ω a F m n ω b F n a b U
193 192 rexlimdvaa A V m ω a F m n ω b F n a b U
194 102 193 syl5bi A V m ω a F m b U a b U
195 194 ralrimiv A V m ω a F m b U a b U
196 97 98 195 3jca A V m ω a F m a U 𝒫 a U b U a b U
197 196 rexlimdvaa A V m ω a F m a U 𝒫 a U b U a b U
198 9 197 syl5bi A V a U a U 𝒫 a U b U a b U
199 198 ralrimiv A V a U a U 𝒫 a U b U a b U
200 rdgfun Fun rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜
201 omex ω V
202 resfunexg Fun rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω V rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω V
203 200 201 202 mp2an rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω V
204 1 203 eqeltri F V
205 204 rnex ran F V
206 205 uniex ran F V
207 2 206 eqeltri U V
208 iswun U V U WUni Tr U U a U a U 𝒫 a U b U a b U
209 207 208 ax-mp U WUni Tr U U a U a U 𝒫 a U b U a b U
210 64 78 199 209 syl3anbrc A V U WUni
211 74 unssad A V A U
212 210 211 jca A V U WUni A U