Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Weak universes
wunex2
Next ⟩
wunex
Metamath Proof Explorer
Ascii
Unicode
Theorem
wunex2
Description:
Construct a weak universe from a given set.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Hypotheses
wunex2.f
ω
⊢
F
=
rec
z
∈
V
⟼
z
∪
⋃
z
∪
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
A
∪
1
𝑜
↾
ω
wunex2.u
⊢
U
=
⋃
ran
F
Assertion
wunex2
⊢
A
∈
V
→
U
∈
WUni
∧
A
⊆
U
Proof
Step
Hyp
Ref
Expression
1
wunex2.f
ω
⊢
F
=
rec
z
∈
V
⟼
z
∪
⋃
z
∪
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
A
∪
1
𝑜
↾
ω
2
wunex2.u
⊢
U
=
⋃
ran
F
3
2
eleq2i
⊢
a
∈
U
↔
a
∈
⋃
ran
F
4
frfnom
ω
ω
⊢
rec
z
∈
V
⟼
z
∪
⋃
z
∪
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
A
∪
1
𝑜
↾
ω
Fn
ω
5
1
fneq1i
ω
ω
ω
⊢
F
Fn
ω
↔
rec
z
∈
V
⟼
z
∪
⋃
z
∪
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
A
∪
1
𝑜
↾
ω
Fn
ω
6
4
5
mpbir
ω
⊢
F
Fn
ω
7
fnunirn
ω
ω
⊢
F
Fn
ω
→
a
∈
⋃
ran
F
↔
∃
m
∈
ω
a
∈
F
m
8
6
7
ax-mp
ω
⊢
a
∈
⋃
ran
F
↔
∃
m
∈
ω
a
∈
F
m
9
3
8
bitri
ω
⊢
a
∈
U
↔
∃
m
∈
ω
a
∈
F
m
10
elssuni
⊢
a
∈
F
m
→
a
⊆
⋃
F
m
11
10
ad2antll
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
a
⊆
⋃
F
m
12
ssun2
⊢
⋃
F
m
⊆
F
m
∪
⋃
F
m
13
ssun1
⊢
F
m
∪
⋃
F
m
⊆
F
m
∪
⋃
F
m
∪
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
14
12
13
sstri
⊢
⋃
F
m
⊆
F
m
∪
⋃
F
m
∪
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
15
11
14
sstrdi
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
a
⊆
F
m
∪
⋃
F
m
∪
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
16
simprl
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
m
∈
ω
17
fvex
⊢
F
m
∈
V
18
17
uniex
⊢
⋃
F
m
∈
V
19
17
18
unex
⊢
F
m
∪
⋃
F
m
∈
V
20
prex
⊢
𝒫
u
⋃
u
∈
V
21
17
mptex
⊢
v
∈
F
m
⟼
u
v
∈
V
22
21
rnex
⊢
ran
v
∈
F
m
⟼
u
v
∈
V
23
20
22
unex
⊢
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
∈
V
24
17
23
iunex
⊢
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
∈
V
25
19
24
unex
⊢
F
m
∪
⋃
F
m
∪
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
∈
V
26
id
⊢
w
=
z
→
w
=
z
27
unieq
⊢
w
=
z
→
⋃
w
=
⋃
z
28
26
27
uneq12d
⊢
w
=
z
→
w
∪
⋃
w
=
z
∪
⋃
z
29
pweq
⊢
u
=
x
→
𝒫
u
=
𝒫
x
30
unieq
⊢
u
=
x
→
⋃
u
=
⋃
x
31
29
30
preq12d
⊢
u
=
x
→
𝒫
u
⋃
u
=
𝒫
x
⋃
x
32
preq2
⊢
v
=
y
→
u
v
=
u
y
33
32
cbvmptv
⊢
v
∈
w
⟼
u
v
=
y
∈
w
⟼
u
y
34
preq1
⊢
u
=
x
→
u
y
=
x
y
35
34
mpteq2dv
⊢
u
=
x
→
y
∈
w
⟼
u
y
=
y
∈
w
⟼
x
y
36
33
35
eqtrid
⊢
u
=
x
→
v
∈
w
⟼
u
v
=
y
∈
w
⟼
x
y
37
36
rneqd
⊢
u
=
x
→
ran
v
∈
w
⟼
u
v
=
ran
y
∈
w
⟼
x
y
38
31
37
uneq12d
⊢
u
=
x
→
𝒫
u
⋃
u
∪
ran
v
∈
w
⟼
u
v
=
𝒫
x
⋃
x
∪
ran
y
∈
w
⟼
x
y
39
38
cbviunv
⊢
⋃
u
∈
w
𝒫
u
⋃
u
∪
ran
v
∈
w
⟼
u
v
=
⋃
x
∈
w
𝒫
x
⋃
x
∪
ran
y
∈
w
⟼
x
y
40
mpteq1
⊢
w
=
z
→
y
∈
w
⟼
x
y
=
y
∈
z
⟼
x
y
41
40
rneqd
⊢
w
=
z
→
ran
y
∈
w
⟼
x
y
=
ran
y
∈
z
⟼
x
y
42
41
uneq2d
⊢
w
=
z
→
𝒫
x
⋃
x
∪
ran
y
∈
w
⟼
x
y
=
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
43
26
42
iuneq12d
⊢
w
=
z
→
⋃
x
∈
w
𝒫
x
⋃
x
∪
ran
y
∈
w
⟼
x
y
=
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
44
39
43
eqtrid
⊢
w
=
z
→
⋃
u
∈
w
𝒫
u
⋃
u
∪
ran
v
∈
w
⟼
u
v
=
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
45
28
44
uneq12d
⊢
w
=
z
→
w
∪
⋃
w
∪
⋃
u
∈
w
𝒫
u
⋃
u
∪
ran
v
∈
w
⟼
u
v
=
z
∪
⋃
z
∪
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
46
id
⊢
w
=
F
m
→
w
=
F
m
47
unieq
⊢
w
=
F
m
→
⋃
w
=
⋃
F
m
48
46
47
uneq12d
⊢
w
=
F
m
→
w
∪
⋃
w
=
F
m
∪
⋃
F
m
49
mpteq1
⊢
w
=
F
m
→
v
∈
w
⟼
u
v
=
v
∈
F
m
⟼
u
v
50
49
rneqd
⊢
w
=
F
m
→
ran
v
∈
w
⟼
u
v
=
ran
v
∈
F
m
⟼
u
v
51
50
uneq2d
⊢
w
=
F
m
→
𝒫
u
⋃
u
∪
ran
v
∈
w
⟼
u
v
=
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
52
46
51
iuneq12d
⊢
w
=
F
m
→
⋃
u
∈
w
𝒫
u
⋃
u
∪
ran
v
∈
w
⟼
u
v
=
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
53
48
52
uneq12d
⊢
w
=
F
m
→
w
∪
⋃
w
∪
⋃
u
∈
w
𝒫
u
⋃
u
∪
ran
v
∈
w
⟼
u
v
=
F
m
∪
⋃
F
m
∪
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
54
1
45
53
frsucmpt2
ω
⊢
m
∈
ω
∧
F
m
∪
⋃
F
m
∪
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
∈
V
→
F
suc
m
=
F
m
∪
⋃
F
m
∪
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
55
16
25
54
sylancl
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
F
suc
m
=
F
m
∪
⋃
F
m
∪
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
56
15
55
sseqtrrd
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
a
⊆
F
suc
m
57
fvssunirn
⊢
F
suc
m
⊆
⋃
ran
F
58
57
2
sseqtrri
⊢
F
suc
m
⊆
U
59
56
58
sstrdi
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
a
⊆
U
60
59
rexlimdvaa
ω
⊢
A
∈
V
→
∃
m
∈
ω
a
∈
F
m
→
a
⊆
U
61
9
60
biimtrid
⊢
A
∈
V
→
a
∈
U
→
a
⊆
U
62
61
ralrimiv
⊢
A
∈
V
→
∀
a
∈
U
a
⊆
U
63
dftr3
⊢
Tr
U
↔
∀
a
∈
U
a
⊆
U
64
62
63
sylibr
⊢
A
∈
V
→
Tr
U
65
1on
⊢
1
𝑜
∈
On
66
unexg
⊢
A
∈
V
∧
1
𝑜
∈
On
→
A
∪
1
𝑜
∈
V
67
65
66
mpan2
⊢
A
∈
V
→
A
∪
1
𝑜
∈
V
68
1
fveq1i
ω
⊢
F
∅
=
rec
z
∈
V
⟼
z
∪
⋃
z
∪
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
A
∪
1
𝑜
↾
ω
∅
69
fr0g
ω
⊢
A
∪
1
𝑜
∈
V
→
rec
z
∈
V
⟼
z
∪
⋃
z
∪
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
A
∪
1
𝑜
↾
ω
∅
=
A
∪
1
𝑜
70
68
69
eqtrid
⊢
A
∪
1
𝑜
∈
V
→
F
∅
=
A
∪
1
𝑜
71
67
70
syl
⊢
A
∈
V
→
F
∅
=
A
∪
1
𝑜
72
fvssunirn
⊢
F
∅
⊆
⋃
ran
F
73
72
2
sseqtrri
⊢
F
∅
⊆
U
74
71
73
eqsstrrdi
⊢
A
∈
V
→
A
∪
1
𝑜
⊆
U
75
74
unssbd
⊢
A
∈
V
→
1
𝑜
⊆
U
76
1n0
⊢
1
𝑜
≠
∅
77
ssn0
⊢
1
𝑜
⊆
U
∧
1
𝑜
≠
∅
→
U
≠
∅
78
75
76
77
sylancl
⊢
A
∈
V
→
U
≠
∅
79
pweq
⊢
u
=
a
→
𝒫
u
=
𝒫
a
80
unieq
⊢
u
=
a
→
⋃
u
=
⋃
a
81
79
80
preq12d
⊢
u
=
a
→
𝒫
u
⋃
u
=
𝒫
a
⋃
a
82
preq1
⊢
u
=
a
→
u
v
=
a
v
83
82
mpteq2dv
⊢
u
=
a
→
v
∈
F
m
⟼
u
v
=
v
∈
F
m
⟼
a
v
84
83
rneqd
⊢
u
=
a
→
ran
v
∈
F
m
⟼
u
v
=
ran
v
∈
F
m
⟼
a
v
85
81
84
uneq12d
⊢
u
=
a
→
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
=
𝒫
a
⋃
a
∪
ran
v
∈
F
m
⟼
a
v
86
85
ssiun2s
⊢
a
∈
F
m
→
𝒫
a
⋃
a
∪
ran
v
∈
F
m
⟼
a
v
⊆
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
87
86
ad2antll
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
𝒫
a
⋃
a
∪
ran
v
∈
F
m
⟼
a
v
⊆
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
88
ssun2
⊢
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
⊆
F
m
∪
⋃
F
m
∪
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
89
88
55
sseqtrrid
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
⊆
F
suc
m
90
89
58
sstrdi
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
⊆
U
91
87
90
sstrd
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
𝒫
a
⋃
a
∪
ran
v
∈
F
m
⟼
a
v
⊆
U
92
91
unssad
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
𝒫
a
⋃
a
⊆
U
93
vpwex
⊢
𝒫
a
∈
V
94
vuniex
⊢
⋃
a
∈
V
95
93
94
prss
⊢
𝒫
a
∈
U
∧
⋃
a
∈
U
↔
𝒫
a
⋃
a
⊆
U
96
92
95
sylibr
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
𝒫
a
∈
U
∧
⋃
a
∈
U
97
96
simprd
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
⋃
a
∈
U
98
96
simpld
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
𝒫
a
∈
U
99
2
eleq2i
⊢
b
∈
U
↔
b
∈
⋃
ran
F
100
fnunirn
ω
ω
⊢
F
Fn
ω
→
b
∈
⋃
ran
F
↔
∃
n
∈
ω
b
∈
F
n
101
6
100
ax-mp
ω
⊢
b
∈
⋃
ran
F
↔
∃
n
∈
ω
b
∈
F
n
102
99
101
bitri
ω
⊢
b
∈
U
↔
∃
n
∈
ω
b
∈
F
n
103
ordom
ω
⊢
Ord
ω
104
simplrl
ω
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
m
∈
ω
105
simprl
ω
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
n
∈
ω
106
ordunel
ω
ω
ω
ω
⊢
Ord
ω
∧
m
∈
ω
∧
n
∈
ω
→
m
∪
n
∈
ω
107
103
104
105
106
mp3an2i
ω
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
m
∪
n
∈
ω
108
ssun1
⊢
m
⊆
m
∪
n
109
fveq2
⊢
k
=
m
→
F
k
=
F
m
110
109
sseq2d
⊢
k
=
m
→
F
m
⊆
F
k
↔
F
m
⊆
F
m
111
fveq2
⊢
k
=
i
→
F
k
=
F
i
112
111
sseq2d
⊢
k
=
i
→
F
m
⊆
F
k
↔
F
m
⊆
F
i
113
fveq2
⊢
k
=
suc
i
→
F
k
=
F
suc
i
114
113
sseq2d
⊢
k
=
suc
i
→
F
m
⊆
F
k
↔
F
m
⊆
F
suc
i
115
fveq2
⊢
k
=
m
∪
n
→
F
k
=
F
m
∪
n
116
115
sseq2d
⊢
k
=
m
∪
n
→
F
m
⊆
F
k
↔
F
m
⊆
F
m
∪
n
117
ssidd
ω
⊢
m
∈
ω
→
F
m
⊆
F
m
118
fveq2
⊢
m
=
i
→
F
m
=
F
i
119
suceq
⊢
m
=
i
→
suc
m
=
suc
i
120
119
fveq2d
⊢
m
=
i
→
F
suc
m
=
F
suc
i
121
118
120
sseq12d
⊢
m
=
i
→
F
m
⊆
F
suc
m
↔
F
i
⊆
F
suc
i
122
ssun1
⊢
F
m
⊆
F
m
∪
⋃
F
m
123
122
13
sstri
⊢
F
m
⊆
F
m
∪
⋃
F
m
∪
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
124
25
54
mpan2
ω
⊢
m
∈
ω
→
F
suc
m
=
F
m
∪
⋃
F
m
∪
⋃
u
∈
F
m
𝒫
u
⋃
u
∪
ran
v
∈
F
m
⟼
u
v
125
123
124
sseqtrrid
ω
⊢
m
∈
ω
→
F
m
⊆
F
suc
m
126
121
125
vtoclga
ω
⊢
i
∈
ω
→
F
i
⊆
F
suc
i
127
126
ad2antrr
ω
ω
⊢
i
∈
ω
∧
m
∈
ω
∧
m
⊆
i
→
F
i
⊆
F
suc
i
128
sstr2
⊢
F
m
⊆
F
i
→
F
i
⊆
F
suc
i
→
F
m
⊆
F
suc
i
129
127
128
syl5com
ω
ω
⊢
i
∈
ω
∧
m
∈
ω
∧
m
⊆
i
→
F
m
⊆
F
i
→
F
m
⊆
F
suc
i
130
110
112
114
116
117
129
findsg
ω
ω
⊢
m
∪
n
∈
ω
∧
m
∈
ω
∧
m
⊆
m
∪
n
→
F
m
⊆
F
m
∪
n
131
108
130
mpan2
ω
ω
⊢
m
∪
n
∈
ω
∧
m
∈
ω
→
F
m
⊆
F
m
∪
n
132
107
104
131
syl2anc
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
F
m
⊆
F
m
∪
n
133
simplrr
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
a
∈
F
m
134
132
133
sseldd
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
a
∈
F
m
∪
n
135
82
mpteq2dv
⊢
u
=
a
→
v
∈
F
m
∪
n
⟼
u
v
=
v
∈
F
m
∪
n
⟼
a
v
136
135
rneqd
⊢
u
=
a
→
ran
v
∈
F
m
∪
n
⟼
u
v
=
ran
v
∈
F
m
∪
n
⟼
a
v
137
81
136
uneq12d
⊢
u
=
a
→
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
=
𝒫
a
⋃
a
∪
ran
v
∈
F
m
∪
n
⟼
a
v
138
137
ssiun2s
⊢
a
∈
F
m
∪
n
→
𝒫
a
⋃
a
∪
ran
v
∈
F
m
∪
n
⟼
a
v
⊆
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
139
134
138
syl
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
𝒫
a
⋃
a
∪
ran
v
∈
F
m
∪
n
⟼
a
v
⊆
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
140
ssun2
⊢
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
⊆
F
m
∪
n
∪
⋃
F
m
∪
n
∪
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
141
fvex
⊢
F
m
∪
n
∈
V
142
141
uniex
⊢
⋃
F
m
∪
n
∈
V
143
141
142
unex
⊢
F
m
∪
n
∪
⋃
F
m
∪
n
∈
V
144
141
mptex
⊢
v
∈
F
m
∪
n
⟼
u
v
∈
V
145
144
rnex
⊢
ran
v
∈
F
m
∪
n
⟼
u
v
∈
V
146
20
145
unex
⊢
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
∈
V
147
141
146
iunex
⊢
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
∈
V
148
143
147
unex
⊢
F
m
∪
n
∪
⋃
F
m
∪
n
∪
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
∈
V
149
id
⊢
w
=
F
m
∪
n
→
w
=
F
m
∪
n
150
unieq
⊢
w
=
F
m
∪
n
→
⋃
w
=
⋃
F
m
∪
n
151
149
150
uneq12d
⊢
w
=
F
m
∪
n
→
w
∪
⋃
w
=
F
m
∪
n
∪
⋃
F
m
∪
n
152
mpteq1
⊢
w
=
F
m
∪
n
→
v
∈
w
⟼
u
v
=
v
∈
F
m
∪
n
⟼
u
v
153
152
rneqd
⊢
w
=
F
m
∪
n
→
ran
v
∈
w
⟼
u
v
=
ran
v
∈
F
m
∪
n
⟼
u
v
154
153
uneq2d
⊢
w
=
F
m
∪
n
→
𝒫
u
⋃
u
∪
ran
v
∈
w
⟼
u
v
=
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
155
149
154
iuneq12d
⊢
w
=
F
m
∪
n
→
⋃
u
∈
w
𝒫
u
⋃
u
∪
ran
v
∈
w
⟼
u
v
=
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
156
151
155
uneq12d
⊢
w
=
F
m
∪
n
→
w
∪
⋃
w
∪
⋃
u
∈
w
𝒫
u
⋃
u
∪
ran
v
∈
w
⟼
u
v
=
F
m
∪
n
∪
⋃
F
m
∪
n
∪
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
157
1
45
156
frsucmpt2
ω
⊢
m
∪
n
∈
ω
∧
F
m
∪
n
∪
⋃
F
m
∪
n
∪
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
∈
V
→
F
suc
m
∪
n
=
F
m
∪
n
∪
⋃
F
m
∪
n
∪
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
158
107
148
157
sylancl
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
F
suc
m
∪
n
=
F
m
∪
n
∪
⋃
F
m
∪
n
∪
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
159
140
158
sseqtrrid
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
⊆
F
suc
m
∪
n
160
fvssunirn
⊢
F
suc
m
∪
n
⊆
⋃
ran
F
161
160
2
sseqtrri
⊢
F
suc
m
∪
n
⊆
U
162
159
161
sstrdi
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
⋃
u
∈
F
m
∪
n
𝒫
u
⋃
u
∪
ran
v
∈
F
m
∪
n
⟼
u
v
⊆
U
163
139
162
sstrd
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
𝒫
a
⋃
a
∪
ran
v
∈
F
m
∪
n
⟼
a
v
⊆
U
164
163
unssbd
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
ran
v
∈
F
m
∪
n
⟼
a
v
⊆
U
165
ssun2
⊢
n
⊆
m
∪
n
166
id
⊢
i
=
m
∪
n
→
i
=
m
∪
n
167
165
166
sseqtrrid
⊢
i
=
m
∪
n
→
n
⊆
i
168
167
biantrud
ω
ω
⊢
i
=
m
∪
n
→
n
∈
ω
↔
n
∈
ω
∧
n
⊆
i
169
168
bicomd
ω
ω
⊢
i
=
m
∪
n
→
n
∈
ω
∧
n
⊆
i
↔
n
∈
ω
170
fveq2
⊢
i
=
m
∪
n
→
F
i
=
F
m
∪
n
171
170
sseq2d
⊢
i
=
m
∪
n
→
F
n
⊆
F
i
↔
F
n
⊆
F
m
∪
n
172
169
171
imbi12d
ω
ω
⊢
i
=
m
∪
n
→
n
∈
ω
∧
n
⊆
i
→
F
n
⊆
F
i
↔
n
∈
ω
→
F
n
⊆
F
m
∪
n
173
eleq1w
ω
ω
⊢
m
=
n
→
m
∈
ω
↔
n
∈
ω
174
173
anbi2d
ω
ω
ω
ω
⊢
m
=
n
→
i
∈
ω
∧
m
∈
ω
↔
i
∈
ω
∧
n
∈
ω
175
sseq1
⊢
m
=
n
→
m
⊆
i
↔
n
⊆
i
176
174
175
anbi12d
ω
ω
ω
ω
⊢
m
=
n
→
i
∈
ω
∧
m
∈
ω
∧
m
⊆
i
↔
i
∈
ω
∧
n
∈
ω
∧
n
⊆
i
177
fveq2
⊢
m
=
n
→
F
m
=
F
n
178
177
sseq1d
⊢
m
=
n
→
F
m
⊆
F
i
↔
F
n
⊆
F
i
179
176
178
imbi12d
ω
ω
ω
ω
⊢
m
=
n
→
i
∈
ω
∧
m
∈
ω
∧
m
⊆
i
→
F
m
⊆
F
i
↔
i
∈
ω
∧
n
∈
ω
∧
n
⊆
i
→
F
n
⊆
F
i
180
110
112
114
112
117
129
findsg
ω
ω
⊢
i
∈
ω
∧
m
∈
ω
∧
m
⊆
i
→
F
m
⊆
F
i
181
179
180
chvarvv
ω
ω
⊢
i
∈
ω
∧
n
∈
ω
∧
n
⊆
i
→
F
n
⊆
F
i
182
181
expl
ω
ω
⊢
i
∈
ω
→
n
∈
ω
∧
n
⊆
i
→
F
n
⊆
F
i
183
172
182
vtoclga
ω
ω
⊢
m
∪
n
∈
ω
→
n
∈
ω
→
F
n
⊆
F
m
∪
n
184
107
105
183
sylc
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
F
n
⊆
F
m
∪
n
185
simprr
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
b
∈
F
n
186
184
185
sseldd
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
b
∈
F
m
∪
n
187
prex
⊢
a
b
∈
V
188
eqid
⊢
v
∈
F
m
∪
n
⟼
a
v
=
v
∈
F
m
∪
n
⟼
a
v
189
preq2
⊢
v
=
b
→
a
v
=
a
b
190
188
189
elrnmpt1s
⊢
b
∈
F
m
∪
n
∧
a
b
∈
V
→
a
b
∈
ran
v
∈
F
m
∪
n
⟼
a
v
191
186
187
190
sylancl
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
a
b
∈
ran
v
∈
F
m
∪
n
⟼
a
v
192
164
191
sseldd
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
∧
n
∈
ω
∧
b
∈
F
n
→
a
b
∈
U
193
192
rexlimdvaa
ω
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
∃
n
∈
ω
b
∈
F
n
→
a
b
∈
U
194
102
193
biimtrid
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
b
∈
U
→
a
b
∈
U
195
194
ralrimiv
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
∀
b
∈
U
a
b
∈
U
196
97
98
195
3jca
ω
⊢
A
∈
V
∧
m
∈
ω
∧
a
∈
F
m
→
⋃
a
∈
U
∧
𝒫
a
∈
U
∧
∀
b
∈
U
a
b
∈
U
197
196
rexlimdvaa
ω
⊢
A
∈
V
→
∃
m
∈
ω
a
∈
F
m
→
⋃
a
∈
U
∧
𝒫
a
∈
U
∧
∀
b
∈
U
a
b
∈
U
198
9
197
biimtrid
⊢
A
∈
V
→
a
∈
U
→
⋃
a
∈
U
∧
𝒫
a
∈
U
∧
∀
b
∈
U
a
b
∈
U
199
198
ralrimiv
⊢
A
∈
V
→
∀
a
∈
U
⋃
a
∈
U
∧
𝒫
a
∈
U
∧
∀
b
∈
U
a
b
∈
U
200
rdgfun
⊢
Fun
rec
z
∈
V
⟼
z
∪
⋃
z
∪
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
A
∪
1
𝑜
201
omex
ω
⊢
ω
∈
V
202
resfunexg
ω
ω
⊢
Fun
rec
z
∈
V
⟼
z
∪
⋃
z
∪
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
A
∪
1
𝑜
∧
ω
∈
V
→
rec
z
∈
V
⟼
z
∪
⋃
z
∪
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
A
∪
1
𝑜
↾
ω
∈
V
203
200
201
202
mp2an
ω
⊢
rec
z
∈
V
⟼
z
∪
⋃
z
∪
⋃
x
∈
z
𝒫
x
⋃
x
∪
ran
y
∈
z
⟼
x
y
A
∪
1
𝑜
↾
ω
∈
V
204
1
203
eqeltri
⊢
F
∈
V
205
204
rnex
⊢
ran
F
∈
V
206
205
uniex
⊢
⋃
ran
F
∈
V
207
2
206
eqeltri
⊢
U
∈
V
208
iswun
⊢
U
∈
V
→
U
∈
WUni
↔
Tr
U
∧
U
≠
∅
∧
∀
a
∈
U
⋃
a
∈
U
∧
𝒫
a
∈
U
∧
∀
b
∈
U
a
b
∈
U
209
207
208
ax-mp
⊢
U
∈
WUni
↔
Tr
U
∧
U
≠
∅
∧
∀
a
∈
U
⋃
a
∈
U
∧
𝒫
a
∈
U
∧
∀
b
∈
U
a
b
∈
U
210
64
78
199
209
syl3anbrc
⊢
A
∈
V
→
U
∈
WUni
211
74
unssad
⊢
A
∈
V
→
A
⊆
U
212
210
211
jca
⊢
A
∈
V
→
U
∈
WUni
∧
A
⊆
U