Metamath Proof Explorer


Theorem xkohmeo

Description: The Exponential Law for topological spaces. The "currying" function F is a homeomorphism on function spaces when J and K are exponentiable spaces (by xkococn , it is sufficient to assume that J , K are locally compact to ensure exponentiability). (Contributed by Mario Carneiro, 13-Apr-2015) (Proof shortened by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses xkohmeo.x φJTopOnX
xkohmeo.y φKTopOnY
xkohmeo.f F=fJ×tKCnLxXyYxfy
xkohmeo.j φJN-Locally Comp
xkohmeo.k φKN-Locally Comp
xkohmeo.l φLTop
Assertion xkohmeo φFL^koJ×tKHomeoL^koK^koJ

Proof

Step Hyp Ref Expression
1 xkohmeo.x φJTopOnX
2 xkohmeo.y φKTopOnY
3 xkohmeo.f F=fJ×tKCnLxXyYxfy
4 xkohmeo.j φJN-Locally Comp
5 xkohmeo.k φKN-Locally Comp
6 xkohmeo.l φLTop
7 txtopon JTopOnXKTopOnYJ×tKTopOnX×Y
8 1 2 7 syl2anc φJ×tKTopOnX×Y
9 topontop J×tKTopOnX×YJ×tKTop
10 8 9 syl φJ×tKTop
11 eqid L^koJ×tK=L^koJ×tK
12 11 xkotopon J×tKTopLTopL^koJ×tKTopOnJ×tKCnL
13 10 6 12 syl2anc φL^koJ×tKTopOnJ×tKCnL
14 vex fV
15 vex xV
16 14 15 op1std z=fx1stz=f
17 14 15 op2ndd z=fx2ndz=x
18 eqidd z=fxy=y
19 16 17 18 oveq123d z=fx2ndz1stzy=xfy
20 19 mpteq2dv z=fxyY2ndz1stzy=yYxfy
21 20 mpompt zJ×tKCnL×XyY2ndz1stzy=fJ×tKCnL,xXyYxfy
22 txtopon L^koJ×tKTopOnJ×tKCnLJTopOnXL^koJ×tK×tJTopOnJ×tKCnL×X
23 13 1 22 syl2anc φL^koJ×tK×tJTopOnJ×tKCnL×X
24 vex zV
25 vex yV
26 24 25 op1std w=zy1stw=z
27 26 fveq2d w=zy1st1stw=1stz
28 26 fveq2d w=zy2nd1stw=2ndz
29 24 25 op2ndd w=zy2ndw=y
30 27 28 29 oveq123d w=zy2nd1stw1st1stw2ndw=2ndz1stzy
31 30 mpompt wJ×tKCnL×X×Y2nd1stw1st1stw2ndw=zJ×tKCnL×X,yY2ndz1stzy
32 txtopon L^koJ×tK×tJTopOnJ×tKCnL×XKTopOnYL^koJ×tK×tJ×tKTopOnJ×tKCnL×X×Y
33 23 2 32 syl2anc φL^koJ×tK×tJ×tKTopOnJ×tKCnL×X×Y
34 toptopon2 LTopLTopOnL
35 6 34 sylib φLTopOnL
36 txcmp xCompyCompx×tyComp
37 36 txnlly JN-Locally Comp KN-Locally Comp J×tKN-Locally Comp
38 4 5 37 syl2anc φJ×tKN-Locally Comp
39 27 mpompt wJ×tKCnL×X×Y1st1stw=zJ×tKCnL×X,yY1stz
40 8 adantr φwJ×tKCnL×X×YJ×tKTopOnX×Y
41 35 adantr φwJ×tKCnL×X×YLTopOnL
42 xp1st wJ×tKCnL×X×Y1stwJ×tKCnL×X
43 42 adantl φwJ×tKCnL×X×Y1stwJ×tKCnL×X
44 xp1st 1stwJ×tKCnL×X1st1stwJ×tKCnL
45 43 44 syl φwJ×tKCnL×X×Y1st1stwJ×tKCnL
46 cnf2 J×tKTopOnX×YLTopOnL1st1stwJ×tKCnL1st1stw:X×YL
47 40 41 45 46 syl3anc φwJ×tKCnL×X×Y1st1stw:X×YL
48 47 feqmptd φwJ×tKCnL×X×Y1st1stw=uX×Y1st1stwu
49 48 mpteq2dva φwJ×tKCnL×X×Y1st1stw=wJ×tKCnL×X×YuX×Y1st1stwu
50 39 49 eqtr3id φzJ×tKCnL×X,yY1stz=wJ×tKCnL×X×YuX×Y1st1stwu
51 23 2 cnmpt1st φzJ×tKCnL×X,yYzL^koJ×tK×tJ×tKCnL^koJ×tK×tJ
52 fveq2 t=z1stt=1stz
53 52 cbvmptv tJ×tKCnL×X1stt=zJ×tKCnL×X1stz
54 16 mpompt zJ×tKCnL×X1stz=fJ×tKCnL,xXf
55 13 1 cnmpt1st φfJ×tKCnL,xXfL^koJ×tK×tJCnL^koJ×tK
56 54 55 eqeltrid φzJ×tKCnL×X1stzL^koJ×tK×tJCnL^koJ×tK
57 53 56 eqeltrid φtJ×tKCnL×X1sttL^koJ×tK×tJCnL^koJ×tK
58 23 2 51 23 57 52 cnmpt21 φzJ×tKCnL×X,yY1stzL^koJ×tK×tJ×tKCnL^koJ×tK
59 50 58 eqeltrrd φwJ×tKCnL×X×YuX×Y1st1stwuL^koJ×tK×tJ×tKCnL^koJ×tK
60 28 mpompt wJ×tKCnL×X×Y2nd1stw=zJ×tKCnL×X,yY2ndz
61 fveq2 t=z2ndt=2ndz
62 61 cbvmptv tJ×tKCnL×X2ndt=zJ×tKCnL×X2ndz
63 17 mpompt zJ×tKCnL×X2ndz=fJ×tKCnL,xXx
64 13 1 cnmpt2nd φfJ×tKCnL,xXxL^koJ×tK×tJCnJ
65 63 64 eqeltrid φzJ×tKCnL×X2ndzL^koJ×tK×tJCnJ
66 62 65 eqeltrid φtJ×tKCnL×X2ndtL^koJ×tK×tJCnJ
67 23 2 51 23 66 61 cnmpt21 φzJ×tKCnL×X,yY2ndzL^koJ×tK×tJ×tKCnJ
68 60 67 eqeltrid φwJ×tKCnL×X×Y2nd1stwL^koJ×tK×tJ×tKCnJ
69 29 mpompt wJ×tKCnL×X×Y2ndw=zJ×tKCnL×X,yYy
70 23 2 cnmpt2nd φzJ×tKCnL×X,yYyL^koJ×tK×tJ×tKCnK
71 69 70 eqeltrid φwJ×tKCnL×X×Y2ndwL^koJ×tK×tJ×tKCnK
72 33 68 71 cnmpt1t φwJ×tKCnL×X×Y2nd1stw2ndwL^koJ×tK×tJ×tKCnJ×tK
73 fveq2 u=2nd1stw2ndw1st1stwu=1st1stw2nd1stw2ndw
74 df-ov 2nd1stw1st1stw2ndw=1st1stw2nd1stw2ndw
75 73 74 eqtr4di u=2nd1stw2ndw1st1stwu=2nd1stw1st1stw2ndw
76 33 8 35 38 59 72 75 cnmptk1p φwJ×tKCnL×X×Y2nd1stw1st1stw2ndwL^koJ×tK×tJ×tKCnL
77 31 76 eqeltrrid φzJ×tKCnL×X,yY2ndz1stzyL^koJ×tK×tJ×tKCnL
78 23 2 77 cnmpt2k φzJ×tKCnL×XyY2ndz1stzyL^koJ×tK×tJCnL^koK
79 21 78 eqeltrrid φfJ×tKCnL,xXyYxfyL^koJ×tK×tJCnL^koK
80 13 1 79 cnmpt2k φfJ×tKCnLxXyYxfyL^koJ×tKCnL^koK^koJ
81 3 80 eqeltrid φFL^koJ×tKCnL^koK^koJ
82 1 2 3 4 5 6 xkocnv φF-1=gJCnL^koKxX,yYgxy
83 15 25 op1std z=xy1stz=x
84 83 fveq2d z=xyg1stz=gx
85 15 25 op2ndd z=xy2ndz=y
86 84 85 fveq12d z=xyg1stz2ndz=gxy
87 86 mpompt zX×Yg1stz2ndz=xX,yYgxy
88 87 mpteq2i gJCnL^koKzX×Yg1stz2ndz=gJCnL^koKxX,yYgxy
89 82 88 eqtr4di φF-1=gJCnL^koKzX×Yg1stz2ndz
90 nllytop JN-Locally Comp JTop
91 4 90 syl φJTop
92 nllytop KN-Locally Comp KTop
93 5 92 syl φKTop
94 xkotop KTopLTopL^koKTop
95 93 6 94 syl2anc φL^koKTop
96 eqid L^koK^koJ=L^koK^koJ
97 96 xkotopon JTopL^koKTopL^koK^koJTopOnJCnL^koK
98 91 95 97 syl2anc φL^koK^koJTopOnJCnL^koK
99 vex gV
100 99 24 op1std w=gz1stw=g
101 99 24 op2ndd w=gz2ndw=z
102 101 fveq2d w=gz1st2ndw=1stz
103 100 102 fveq12d w=gz1stw1st2ndw=g1stz
104 101 fveq2d w=gz2nd2ndw=2ndz
105 103 104 fveq12d w=gz1stw1st2ndw2nd2ndw=g1stz2ndz
106 105 mpompt wJCnL^koK×X×Y1stw1st2ndw2nd2ndw=gJCnL^koK,zX×Yg1stz2ndz
107 txtopon L^koK^koJTopOnJCnL^koKJ×tKTopOnX×YL^koK^koJ×tJ×tKTopOnJCnL^koK×X×Y
108 98 8 107 syl2anc φL^koK^koJ×tJ×tKTopOnJCnL^koK×X×Y
109 2 adantr φwJCnL^koK×X×YKTopOnY
110 35 adantr φwJCnL^koK×X×YLTopOnL
111 eqid L^koK=L^koK
112 111 xkotopon KTopLTopL^koKTopOnKCnL
113 93 6 112 syl2anc φL^koKTopOnKCnL
114 xp1st wJCnL^koK×X×Y1stwJCnL^koK
115 cnf2 JTopOnXL^koKTopOnKCnL1stwJCnL^koK1stw:XKCnL
116 1 113 114 115 syl2an3an φwJCnL^koK×X×Y1stw:XKCnL
117 xp2nd wJCnL^koK×X×Y2ndwX×Y
118 117 adantl φwJCnL^koK×X×Y2ndwX×Y
119 xp1st 2ndwX×Y1st2ndwX
120 118 119 syl φwJCnL^koK×X×Y1st2ndwX
121 116 120 ffvelcdmd φwJCnL^koK×X×Y1stw1st2ndwKCnL
122 cnf2 KTopOnYLTopOnL1stw1st2ndwKCnL1stw1st2ndw:YL
123 109 110 121 122 syl3anc φwJCnL^koK×X×Y1stw1st2ndw:YL
124 123 feqmptd φwJCnL^koK×X×Y1stw1st2ndw=yY1stw1st2ndwy
125 124 mpteq2dva φwJCnL^koK×X×Y1stw1st2ndw=wJCnL^koK×X×YyY1stw1st2ndwy
126 100 mpompt wJCnL^koK×X×Y1stw=gJCnL^koK,zX×Yg
127 116 feqmptd φwJCnL^koK×X×Y1stw=xX1stwx
128 127 mpteq2dva φwJCnL^koK×X×Y1stw=wJCnL^koK×X×YxX1stwx
129 126 128 eqtr3id φgJCnL^koK,zX×Yg=wJCnL^koK×X×YxX1stwx
130 98 8 cnmpt1st φgJCnL^koK,zX×YgL^koK^koJ×tJ×tKCnL^koK^koJ
131 129 130 eqeltrrd φwJCnL^koK×X×YxX1stwxL^koK^koJ×tJ×tKCnL^koK^koJ
132 102 mpompt wJCnL^koK×X×Y1st2ndw=gJCnL^koK,zX×Y1stz
133 98 8 cnmpt2nd φgJCnL^koK,zX×YzL^koK^koJ×tJ×tKCnJ×tK
134 52 cbvmptv tX×Y1stt=zX×Y1stz
135 83 mpompt zX×Y1stz=xX,yYx
136 1 2 cnmpt1st φxX,yYxJ×tKCnJ
137 135 136 eqeltrid φzX×Y1stzJ×tKCnJ
138 134 137 eqeltrid φtX×Y1sttJ×tKCnJ
139 98 8 133 8 138 52 cnmpt21 φgJCnL^koK,zX×Y1stzL^koK^koJ×tJ×tKCnJ
140 132 139 eqeltrid φwJCnL^koK×X×Y1st2ndwL^koK^koJ×tJ×tKCnJ
141 fveq2 x=1st2ndw1stwx=1stw1st2ndw
142 108 1 113 4 131 140 141 cnmptk1p φwJCnL^koK×X×Y1stw1st2ndwL^koK^koJ×tJ×tKCnL^koK
143 125 142 eqeltrrd φwJCnL^koK×X×YyY1stw1st2ndwyL^koK^koJ×tJ×tKCnL^koK
144 104 mpompt wJCnL^koK×X×Y2nd2ndw=gJCnL^koK,zX×Y2ndz
145 61 cbvmptv tX×Y2ndt=zX×Y2ndz
146 85 mpompt zX×Y2ndz=xX,yYy
147 1 2 cnmpt2nd φxX,yYyJ×tKCnK
148 146 147 eqeltrid φzX×Y2ndzJ×tKCnK
149 145 148 eqeltrid φtX×Y2ndtJ×tKCnK
150 98 8 133 8 149 61 cnmpt21 φgJCnL^koK,zX×Y2ndzL^koK^koJ×tJ×tKCnK
151 144 150 eqeltrid φwJCnL^koK×X×Y2nd2ndwL^koK^koJ×tJ×tKCnK
152 fveq2 y=2nd2ndw1stw1st2ndwy=1stw1st2ndw2nd2ndw
153 108 2 35 5 143 151 152 cnmptk1p φwJCnL^koK×X×Y1stw1st2ndw2nd2ndwL^koK^koJ×tJ×tKCnL
154 106 153 eqeltrrid φgJCnL^koK,zX×Yg1stz2ndzL^koK^koJ×tJ×tKCnL
155 98 8 154 cnmpt2k φgJCnL^koKzX×Yg1stz2ndzL^koK^koJCnL^koJ×tK
156 89 155 eqeltrd φF-1L^koK^koJCnL^koJ×tK
157 ishmeo FL^koJ×tKHomeoL^koK^koJFL^koJ×tKCnL^koK^koJF-1L^koK^koJCnL^koJ×tK
158 81 156 157 sylanbrc φFL^koJ×tKHomeoL^koK^koJ