Metamath Proof Explorer


Theorem yonedalem3

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y=YonC
yoneda.b B=BaseC
yoneda.1 1˙=IdC
yoneda.o O=oppCatC
yoneda.s S=SetCatU
yoneda.t T=SetCatV
yoneda.q Q=OFuncCatS
yoneda.h H=HomFQ
yoneda.r R=Q×cOFuncCatT
yoneda.e E=OevalFS
yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
yoneda.c φCCat
yoneda.w φVW
yoneda.u φranHom𝑓CU
yoneda.v φranHom𝑓QUV
yoneda.m M=fOFuncS,xBa1stYxONatSfax1˙x
Assertion yonedalem3 φMZQ×cONatTE

Proof

Step Hyp Ref Expression
1 yoneda.y Y=YonC
2 yoneda.b B=BaseC
3 yoneda.1 1˙=IdC
4 yoneda.o O=oppCatC
5 yoneda.s S=SetCatU
6 yoneda.t T=SetCatV
7 yoneda.q Q=OFuncCatS
8 yoneda.h H=HomFQ
9 yoneda.r R=Q×cOFuncCatT
10 yoneda.e E=OevalFS
11 yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
12 yoneda.c φCCat
13 yoneda.w φVW
14 yoneda.u φranHom𝑓CU
15 yoneda.v φranHom𝑓QUV
16 yoneda.m M=fOFuncS,xBa1stYxONatSfax1˙x
17 ovex 1stYxONatSfV
18 17 mptex a1stYxONatSfax1˙xV
19 16 18 fnmpoi MFnOFuncS×B
20 19 a1i φMFnOFuncS×B
21 12 adantr φgOFuncSyBCCat
22 13 adantr φgOFuncSyBVW
23 14 adantr φgOFuncSyBranHom𝑓CU
24 15 adantr φgOFuncSyBranHom𝑓QUV
25 simprl φgOFuncSyBgOFuncS
26 simprr φgOFuncSyByB
27 1 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 16 yonedalem3a φgOFuncSyBgMy=a1stYyONatSgay1˙ygMy:g1stZyg1stEy
28 27 simprd φgOFuncSyBgMy:g1stZyg1stEy
29 eqid HomT=HomT
30 eqid Q×cO=Q×cO
31 7 fucbas OFuncS=BaseQ
32 4 2 oppcbas B=BaseO
33 30 31 32 xpcbas OFuncS×B=BaseQ×cO
34 eqid BaseT=BaseT
35 relfunc RelQ×cOFuncT
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yonedalem1 φZQ×cOFuncTEQ×cOFuncT
37 36 simpld φZQ×cOFuncT
38 1st2ndbr RelQ×cOFuncTZQ×cOFuncT1stZQ×cOFuncT2ndZ
39 35 37 38 sylancr φ1stZQ×cOFuncT2ndZ
40 33 34 39 funcf1 φ1stZ:OFuncS×BBaseT
41 40 fovcdmda φgOFuncSyBg1stZyBaseT
42 6 22 setcbas φgOFuncSyBV=BaseT
43 41 42 eleqtrrd φgOFuncSyBg1stZyV
44 36 simprd φEQ×cOFuncT
45 1st2ndbr RelQ×cOFuncTEQ×cOFuncT1stEQ×cOFuncT2ndE
46 35 44 45 sylancr φ1stEQ×cOFuncT2ndE
47 33 34 46 funcf1 φ1stE:OFuncS×BBaseT
48 47 fovcdmda φgOFuncSyBg1stEyBaseT
49 48 42 eleqtrrd φgOFuncSyBg1stEyV
50 6 22 29 43 49 elsetchom φgOFuncSyBgMyg1stZyHomTg1stEygMy:g1stZyg1stEy
51 28 50 mpbird φgOFuncSyBgMyg1stZyHomTg1stEy
52 51 ralrimivva φgOFuncSyBgMyg1stZyHomTg1stEy
53 fveq2 z=gyMz=Mgy
54 df-ov gMy=Mgy
55 53 54 eqtr4di z=gyMz=gMy
56 fveq2 z=gy1stZz=1stZgy
57 df-ov g1stZy=1stZgy
58 56 57 eqtr4di z=gy1stZz=g1stZy
59 fveq2 z=gy1stEz=1stEgy
60 df-ov g1stEy=1stEgy
61 59 60 eqtr4di z=gy1stEz=g1stEy
62 58 61 oveq12d z=gy1stZzHomT1stEz=g1stZyHomTg1stEy
63 55 62 eleq12d z=gyMz1stZzHomT1stEzgMyg1stZyHomTg1stEy
64 63 ralxp zOFuncS×BMz1stZzHomT1stEzgOFuncSyBgMyg1stZyHomTg1stEy
65 52 64 sylibr φzOFuncS×BMz1stZzHomT1stEz
66 ovex OFuncSV
67 2 fvexi BV
68 66 67 mpoex fOFuncS,xBa1stYxONatSfax1˙xV
69 16 68 eqeltri MV
70 69 elixp MzOFuncS×B1stZzHomT1stEzMFnOFuncS×BzOFuncS×BMz1stZzHomT1stEz
71 20 65 70 sylanbrc φMzOFuncS×B1stZzHomT1stEz
72 12 adantr φzOFuncS×BwOFuncS×BgzHomQ×cOwCCat
73 13 adantr φzOFuncS×BwOFuncS×BgzHomQ×cOwVW
74 14 adantr φzOFuncS×BwOFuncS×BgzHomQ×cOwranHom𝑓CU
75 15 adantr φzOFuncS×BwOFuncS×BgzHomQ×cOwranHom𝑓QUV
76 simpr1 φzOFuncS×BwOFuncS×BgzHomQ×cOwzOFuncS×B
77 xp1st zOFuncS×B1stzOFuncS
78 76 77 syl φzOFuncS×BwOFuncS×BgzHomQ×cOw1stzOFuncS
79 xp2nd zOFuncS×B2ndzB
80 76 79 syl φzOFuncS×BwOFuncS×BgzHomQ×cOw2ndzB
81 simpr2 φzOFuncS×BwOFuncS×BgzHomQ×cOwwOFuncS×B
82 xp1st wOFuncS×B1stwOFuncS
83 81 82 syl φzOFuncS×BwOFuncS×BgzHomQ×cOw1stwOFuncS
84 xp2nd wOFuncS×B2ndwB
85 81 84 syl φzOFuncS×BwOFuncS×BgzHomQ×cOw2ndwB
86 simpr3 φzOFuncS×BwOFuncS×BgzHomQ×cOwgzHomQ×cOw
87 eqid ONatS=ONatS
88 7 87 fuchom ONatS=HomQ
89 eqid HomO=HomO
90 eqid HomQ×cO=HomQ×cO
91 30 33 88 89 90 76 81 xpchom φzOFuncS×BwOFuncS×BgzHomQ×cOwzHomQ×cOw=1stzONatS1stw×2ndzHomO2ndw
92 eqid HomC=HomC
93 92 4 oppchom 2ndzHomO2ndw=2ndwHomC2ndz
94 93 xpeq2i 1stzONatS1stw×2ndzHomO2ndw=1stzONatS1stw×2ndwHomC2ndz
95 91 94 eqtrdi φzOFuncS×BwOFuncS×BgzHomQ×cOwzHomQ×cOw=1stzONatS1stw×2ndwHomC2ndz
96 86 95 eleqtrd φzOFuncS×BwOFuncS×BgzHomQ×cOwg1stzONatS1stw×2ndwHomC2ndz
97 xp1st g1stzONatS1stw×2ndwHomC2ndz1stg1stzONatS1stw
98 96 97 syl φzOFuncS×BwOFuncS×BgzHomQ×cOw1stg1stzONatS1stw
99 xp2nd g1stzONatS1stw×2ndwHomC2ndz2ndg2ndwHomC2ndz
100 96 99 syl φzOFuncS×BwOFuncS×BgzHomQ×cOw2ndg2ndwHomC2ndz
101 1 2 3 4 5 6 7 8 9 10 11 72 73 74 75 78 80 83 85 98 100 16 yonedalem3b φzOFuncS×BwOFuncS×BgzHomQ×cOw1stwM2ndw1stz1stZ2ndz1stw1stZ2ndwcompT1stw1stE2ndw1stg1stz2ndz2ndZ1stw2ndw2ndg=1stg1stz2ndz2ndE1stw2ndw2ndg1stz1stZ2ndz1stz1stE2ndzcompT1stw1stE2ndw1stzM2ndz
102 1st2nd2 zOFuncS×Bz=1stz2ndz
103 76 102 syl φzOFuncS×BwOFuncS×BgzHomQ×cOwz=1stz2ndz
104 103 fveq2d φzOFuncS×BwOFuncS×BgzHomQ×cOw1stZz=1stZ1stz2ndz
105 df-ov 1stz1stZ2ndz=1stZ1stz2ndz
106 104 105 eqtr4di φzOFuncS×BwOFuncS×BgzHomQ×cOw1stZz=1stz1stZ2ndz
107 1st2nd2 wOFuncS×Bw=1stw2ndw
108 81 107 syl φzOFuncS×BwOFuncS×BgzHomQ×cOww=1stw2ndw
109 108 fveq2d φzOFuncS×BwOFuncS×BgzHomQ×cOw1stZw=1stZ1stw2ndw
110 df-ov 1stw1stZ2ndw=1stZ1stw2ndw
111 109 110 eqtr4di φzOFuncS×BwOFuncS×BgzHomQ×cOw1stZw=1stw1stZ2ndw
112 106 111 opeq12d φzOFuncS×BwOFuncS×BgzHomQ×cOw1stZz1stZw=1stz1stZ2ndz1stw1stZ2ndw
113 108 fveq2d φzOFuncS×BwOFuncS×BgzHomQ×cOw1stEw=1stE1stw2ndw
114 df-ov 1stw1stE2ndw=1stE1stw2ndw
115 113 114 eqtr4di φzOFuncS×BwOFuncS×BgzHomQ×cOw1stEw=1stw1stE2ndw
116 112 115 oveq12d φzOFuncS×BwOFuncS×BgzHomQ×cOw1stZz1stZwcompT1stEw=1stz1stZ2ndz1stw1stZ2ndwcompT1stw1stE2ndw
117 108 fveq2d φzOFuncS×BwOFuncS×BgzHomQ×cOwMw=M1stw2ndw
118 df-ov 1stwM2ndw=M1stw2ndw
119 117 118 eqtr4di φzOFuncS×BwOFuncS×BgzHomQ×cOwMw=1stwM2ndw
120 103 108 oveq12d φzOFuncS×BwOFuncS×BgzHomQ×cOwz2ndZw=1stz2ndz2ndZ1stw2ndw
121 1st2nd2 g1stzONatS1stw×2ndwHomC2ndzg=1stg2ndg
122 96 121 syl φzOFuncS×BwOFuncS×BgzHomQ×cOwg=1stg2ndg
123 120 122 fveq12d φzOFuncS×BwOFuncS×BgzHomQ×cOwz2ndZwg=1stz2ndz2ndZ1stw2ndw1stg2ndg
124 df-ov 1stg1stz2ndz2ndZ1stw2ndw2ndg=1stz2ndz2ndZ1stw2ndw1stg2ndg
125 123 124 eqtr4di φzOFuncS×BwOFuncS×BgzHomQ×cOwz2ndZwg=1stg1stz2ndz2ndZ1stw2ndw2ndg
126 116 119 125 oveq123d φzOFuncS×BwOFuncS×BgzHomQ×cOwMw1stZz1stZwcompT1stEwz2ndZwg=1stwM2ndw1stz1stZ2ndz1stw1stZ2ndwcompT1stw1stE2ndw1stg1stz2ndz2ndZ1stw2ndw2ndg
127 103 fveq2d φzOFuncS×BwOFuncS×BgzHomQ×cOw1stEz=1stE1stz2ndz
128 df-ov 1stz1stE2ndz=1stE1stz2ndz
129 127 128 eqtr4di φzOFuncS×BwOFuncS×BgzHomQ×cOw1stEz=1stz1stE2ndz
130 106 129 opeq12d φzOFuncS×BwOFuncS×BgzHomQ×cOw1stZz1stEz=1stz1stZ2ndz1stz1stE2ndz
131 130 115 oveq12d φzOFuncS×BwOFuncS×BgzHomQ×cOw1stZz1stEzcompT1stEw=1stz1stZ2ndz1stz1stE2ndzcompT1stw1stE2ndw
132 103 108 oveq12d φzOFuncS×BwOFuncS×BgzHomQ×cOwz2ndEw=1stz2ndz2ndE1stw2ndw
133 132 122 fveq12d φzOFuncS×BwOFuncS×BgzHomQ×cOwz2ndEwg=1stz2ndz2ndE1stw2ndw1stg2ndg
134 df-ov 1stg1stz2ndz2ndE1stw2ndw2ndg=1stz2ndz2ndE1stw2ndw1stg2ndg
135 133 134 eqtr4di φzOFuncS×BwOFuncS×BgzHomQ×cOwz2ndEwg=1stg1stz2ndz2ndE1stw2ndw2ndg
136 103 fveq2d φzOFuncS×BwOFuncS×BgzHomQ×cOwMz=M1stz2ndz
137 df-ov 1stzM2ndz=M1stz2ndz
138 136 137 eqtr4di φzOFuncS×BwOFuncS×BgzHomQ×cOwMz=1stzM2ndz
139 131 135 138 oveq123d φzOFuncS×BwOFuncS×BgzHomQ×cOwz2ndEwg1stZz1stEzcompT1stEwMz=1stg1stz2ndz2ndE1stw2ndw2ndg1stz1stZ2ndz1stz1stE2ndzcompT1stw1stE2ndw1stzM2ndz
140 101 126 139 3eqtr4d φzOFuncS×BwOFuncS×BgzHomQ×cOwMw1stZz1stZwcompT1stEwz2ndZwg=z2ndEwg1stZz1stEzcompT1stEwMz
141 140 ralrimivvva φzOFuncS×BwOFuncS×BgzHomQ×cOwMw1stZz1stZwcompT1stEwz2ndZwg=z2ndEwg1stZz1stEzcompT1stEwMz
142 eqid Q×cONatT=Q×cONatT
143 eqid compT=compT
144 142 33 90 29 143 37 44 isnat2 φMZQ×cONatTEMzOFuncS×B1stZzHomT1stEzzOFuncS×BwOFuncS×BgzHomQ×cOwMw1stZz1stZwcompT1stEwz2ndZwg=z2ndEwg1stZz1stEzcompT1stEwMz
145 71 141 144 mpbir2and φMZQ×cONatTE