| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sqmod.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 2 |
|
2sqmod.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
| 3 |
|
2sqmod.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
| 4 |
|
2sqmod.4 |
⊢ ( 𝜑 → 𝐶 ∈ ℕ0 ) |
| 5 |
|
2sqmod.5 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
| 6 |
|
2sqmod.6 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 7 |
|
2sqmod.7 |
⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) |
| 8 |
|
2sqmod.8 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 ) |
| 9 |
|
2sqmod.9 |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) = 𝑃 ) |
| 10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐴 ≤ 𝐵 ) |
| 11 |
4
|
nn0red |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐶 ∈ ℝ ) |
| 13 |
3
|
nn0red |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐵 ∈ ℝ ) |
| 15 |
4
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐶 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 0 ≤ 𝐶 ) |
| 17 |
3
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 0 ≤ 𝐵 ) |
| 19 |
4
|
nn0cnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 20 |
19
|
sqcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 22 |
3
|
nn0cnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 23 |
22
|
sqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 25 |
2
|
nn0cnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 26 |
25
|
sqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 27 |
5
|
nn0cnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 28 |
27
|
sqcld |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 29 |
8 9
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 30 |
26 23 20 28 29
|
subaddeqd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 32 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 33 |
4
|
nn0zd |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
| 34 |
|
dvdsmul1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∥ ( 𝐴 · 𝐶 ) ) |
| 35 |
32 33 34
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∥ ( 𝐴 · 𝐶 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐴 ∥ ( 𝐴 · 𝐶 ) ) |
| 37 |
25 19
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 39 |
22 27
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝐷 ) ∈ ℂ ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐵 · 𝐷 ) ∈ ℂ ) |
| 41 |
2
|
nn0red |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 42 |
41 11
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
| 43 |
5
|
nn0red |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 44 |
13 43
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝐷 ) ∈ ℝ ) |
| 45 |
42 44
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ∈ ℝ ) |
| 46 |
45
|
recnd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ∈ ℂ ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ∈ ℂ ) |
| 48 |
45
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) |
| 49 |
3
|
nn0zd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 50 |
1 32 49 8
|
2sqn0 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 51 |
|
elnnne0 |
⊢ ( 𝐴 ∈ ℕ ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐴 ≠ 0 ) ) |
| 52 |
2 50 51
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 53 |
5
|
nn0zd |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
| 54 |
28 20
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 55 |
54 9
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = 𝑃 ) |
| 56 |
1 53 33 55
|
2sqn0 |
⊢ ( 𝜑 → 𝐷 ≠ 0 ) |
| 57 |
|
elnnne0 |
⊢ ( 𝐷 ∈ ℕ ↔ ( 𝐷 ∈ ℕ0 ∧ 𝐷 ≠ 0 ) ) |
| 58 |
5 56 57
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
| 59 |
52 58
|
nnmulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐷 ) ∈ ℕ ) |
| 60 |
1 33 53 9
|
2sqn0 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 61 |
|
elnnne0 |
⊢ ( 𝐶 ∈ ℕ ↔ ( 𝐶 ∈ ℕ0 ∧ 𝐶 ≠ 0 ) ) |
| 62 |
4 60 61
|
sylanbrc |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
| 63 |
23 26
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 64 |
63 8
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = 𝑃 ) |
| 65 |
1 49 32 64
|
2sqn0 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 66 |
|
elnnne0 |
⊢ ( 𝐵 ∈ ℕ ↔ ( 𝐵 ∈ ℕ0 ∧ 𝐵 ≠ 0 ) ) |
| 67 |
3 65 66
|
sylanbrc |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 68 |
62 67
|
nnmulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) ∈ ℕ ) |
| 69 |
59 68
|
nnaddcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ∈ ℕ ) |
| 70 |
69
|
nnsqcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ∈ ℕ ) |
| 71 |
70
|
nnred |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |
| 72 |
45
|
resqcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) ∈ ℝ ) |
| 73 |
71 72
|
addge02d |
⊢ ( 𝜑 → ( 0 ≤ ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) ↔ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ≤ ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) ) |
| 74 |
48 73
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ≤ ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 75 |
8 9
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( 𝑃 · 𝑃 ) ) |
| 76 |
|
bhmafibid1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 77 |
41 13 11 43 76
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 78 |
75 77
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑃 · 𝑃 ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 79 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 80 |
1 79
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 81 |
80
|
zcnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 82 |
81
|
sqvald |
⊢ ( 𝜑 → ( 𝑃 ↑ 2 ) = ( 𝑃 · 𝑃 ) ) |
| 83 |
19 22
|
mulcomd |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) = ( 𝐵 · 𝐶 ) ) |
| 84 |
83
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) = ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) |
| 85 |
84
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 87 |
78 82 86
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑃 ↑ 2 ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 88 |
74 87
|
breqtrrd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ≤ ( 𝑃 ↑ 2 ) ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ≤ ( 𝑃 ↑ 2 ) ) |
| 90 |
32 53
|
zmulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐷 ) ∈ ℤ ) |
| 91 |
33 49
|
zmulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) ∈ ℤ ) |
| 92 |
90 91
|
zaddcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ∈ ℤ ) |
| 93 |
|
dvdssqim |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) → ( 𝑃 ↑ 2 ) ∥ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 94 |
80 92 93
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) → ( 𝑃 ↑ 2 ) ∥ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 95 |
|
zsqcl |
⊢ ( 𝑃 ∈ ℤ → ( 𝑃 ↑ 2 ) ∈ ℤ ) |
| 96 |
80 95
|
syl |
⊢ ( 𝜑 → ( 𝑃 ↑ 2 ) ∈ ℤ ) |
| 97 |
|
dvdsle |
⊢ ( ( ( 𝑃 ↑ 2 ) ∈ ℤ ∧ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ∈ ℕ ) → ( ( 𝑃 ↑ 2 ) ∥ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) → ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 98 |
96 70 97
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 2 ) ∥ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) → ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 99 |
94 98
|
syld |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) → ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 100 |
99
|
imp |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) |
| 101 |
96
|
zred |
⊢ ( 𝜑 → ( 𝑃 ↑ 2 ) ∈ ℝ ) |
| 102 |
71 101
|
letri3d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) = ( 𝑃 ↑ 2 ) ↔ ( ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ≤ ( 𝑃 ↑ 2 ) ∧ ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) ) |
| 103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) = ( 𝑃 ↑ 2 ) ↔ ( ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ≤ ( 𝑃 ↑ 2 ) ∧ ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) ) |
| 104 |
89 100 103
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) = ( 𝑃 ↑ 2 ) ) |
| 105 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝑃 ↑ 2 ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 106 |
104 105
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) |
| 107 |
71
|
recnd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ∈ ℂ ) |
| 108 |
72
|
recnd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) ∈ ℂ ) |
| 109 |
107 107 108
|
subadd2d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) − ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) ↔ ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) − ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) ↔ ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 111 |
106 110
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) − ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) |
| 112 |
107
|
subidd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) − ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) = 0 ) |
| 113 |
112
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) − ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) = 0 ) |
| 114 |
111 113
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) = 0 ) |
| 115 |
47 114
|
sqeq0d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) = 0 ) |
| 116 |
38 40 115
|
subeq0d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐷 ) ) |
| 117 |
36 116
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐴 ∥ ( 𝐵 · 𝐷 ) ) |
| 118 |
1 32 49 8
|
2sqcoprm |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 ) |
| 119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 gcd 𝐵 ) = 1 ) |
| 120 |
|
coprmdvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( ( 𝐴 ∥ ( 𝐵 · 𝐷 ) ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → 𝐴 ∥ 𝐷 ) ) |
| 121 |
32 49 53 120
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 ∥ ( 𝐵 · 𝐷 ) ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → 𝐴 ∥ 𝐷 ) ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( 𝐴 ∥ ( 𝐵 · 𝐷 ) ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → 𝐴 ∥ 𝐷 ) ) |
| 123 |
117 119 122
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐴 ∥ 𝐷 ) |
| 124 |
|
dvdsle |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ∥ 𝐷 → 𝐴 ≤ 𝐷 ) ) |
| 125 |
32 58 124
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∥ 𝐷 → 𝐴 ≤ 𝐷 ) ) |
| 126 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 ∥ 𝐷 → 𝐴 ≤ 𝐷 ) ) |
| 127 |
123 126
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐴 ≤ 𝐷 ) |
| 128 |
52
|
nnrpd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 129 |
128
|
rprege0d |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 130 |
5
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐷 ) |
| 131 |
|
le2sq |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 ≤ 𝐷 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐷 ↑ 2 ) ) ) |
| 132 |
129 43 130 131
|
syl12anc |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐷 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐷 ↑ 2 ) ) ) |
| 133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 ≤ 𝐷 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐷 ↑ 2 ) ) ) |
| 134 |
127 133
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 ↑ 2 ) ≤ ( 𝐷 ↑ 2 ) ) |
| 135 |
52
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
| 136 |
135
|
nnred |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 137 |
|
zsqcl |
⊢ ( 𝐷 ∈ ℤ → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 138 |
53 137
|
syl |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 139 |
138
|
zred |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℝ ) |
| 140 |
136 139
|
suble0d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ≤ 0 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐷 ↑ 2 ) ) ) |
| 141 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ≤ 0 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐷 ↑ 2 ) ) ) |
| 142 |
134 141
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ≤ 0 ) |
| 143 |
31 142
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ≤ 0 ) |
| 144 |
|
dvdsmul1 |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → 𝐵 ∥ ( 𝐵 · 𝐷 ) ) |
| 145 |
49 53 144
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∥ ( 𝐵 · 𝐷 ) ) |
| 146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐵 ∥ ( 𝐵 · 𝐷 ) ) |
| 147 |
146 116
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐵 ∥ ( 𝐴 · 𝐶 ) ) |
| 148 |
32 49
|
gcdcomd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
| 149 |
148 118
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐵 gcd 𝐴 ) = 1 ) |
| 150 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐵 gcd 𝐴 ) = 1 ) |
| 151 |
|
coprmdvds |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐵 ∥ ( 𝐴 · 𝐶 ) ∧ ( 𝐵 gcd 𝐴 ) = 1 ) → 𝐵 ∥ 𝐶 ) ) |
| 152 |
49 32 33 151
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 ∥ ( 𝐴 · 𝐶 ) ∧ ( 𝐵 gcd 𝐴 ) = 1 ) → 𝐵 ∥ 𝐶 ) ) |
| 153 |
152
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( 𝐵 ∥ ( 𝐴 · 𝐶 ) ∧ ( 𝐵 gcd 𝐴 ) = 1 ) → 𝐵 ∥ 𝐶 ) ) |
| 154 |
147 150 153
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐵 ∥ 𝐶 ) |
| 155 |
|
dvdsle |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ∥ 𝐶 → 𝐵 ≤ 𝐶 ) ) |
| 156 |
49 62 155
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∥ 𝐶 → 𝐵 ≤ 𝐶 ) ) |
| 157 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐵 ∥ 𝐶 → 𝐵 ≤ 𝐶 ) ) |
| 158 |
154 157
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐵 ≤ 𝐶 ) |
| 159 |
13 11 17 15
|
le2sqd |
⊢ ( 𝜑 → ( 𝐵 ≤ 𝐶 ↔ ( 𝐵 ↑ 2 ) ≤ ( 𝐶 ↑ 2 ) ) ) |
| 160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐵 ↑ 2 ) ≤ ( 𝐶 ↑ 2 ) ) ) |
| 161 |
158 160
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐵 ↑ 2 ) ≤ ( 𝐶 ↑ 2 ) ) |
| 162 |
11
|
resqcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℝ ) |
| 163 |
|
zsqcl |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 164 |
49 163
|
syl |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 165 |
164
|
zred |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
| 166 |
162 165
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ↔ ( 𝐵 ↑ 2 ) ≤ ( 𝐶 ↑ 2 ) ) ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 0 ≤ ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ↔ ( 𝐵 ↑ 2 ) ≤ ( 𝐶 ↑ 2 ) ) ) |
| 168 |
161 167
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 0 ≤ ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 169 |
136 139
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ∈ ℝ ) |
| 170 |
30 169
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
| 171 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 172 |
170 171
|
letri3d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ↔ ( ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ↔ ( ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 174 |
143 168 173
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ) |
| 175 |
21 24 174
|
subeq0d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐶 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 176 |
12 14 16 18 175
|
sq11d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐶 = 𝐵 ) |
| 177 |
10 176
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐴 ≤ 𝐶 ) |
| 178 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐶 ≤ 𝐷 ) |
| 179 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐴 ∈ ℝ ) |
| 180 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐷 ∈ ℝ ) |
| 181 |
2
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 0 ≤ 𝐴 ) |
| 183 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 0 ≤ 𝐷 ) |
| 184 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 185 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 186 |
168 31
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 0 ≤ ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ) |
| 187 |
169 171
|
letri3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) = 0 ↔ ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ) ) ) |
| 188 |
187
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) = 0 ↔ ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ) ) ) |
| 189 |
142 186 188
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( ( 𝐴 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) = 0 ) |
| 190 |
184 185 189
|
subeq0d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 ↑ 2 ) = ( 𝐷 ↑ 2 ) ) |
| 191 |
179 180 182 183 190
|
sq11d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐴 = 𝐷 ) |
| 192 |
178 191
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐶 ≤ 𝐴 ) |
| 193 |
41 11
|
letri3d |
⊢ ( 𝜑 → ( 𝐴 = 𝐶 ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ) ) |
| 194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 = 𝐶 ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ) ) |
| 195 |
177 192 194
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) → 𝐴 = 𝐶 ) |
| 196 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → 𝐴 ∈ ℂ ) |
| 197 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → 𝐶 ∈ ℂ ) |
| 198 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → 𝐵 ∈ ℂ ) |
| 199 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → 𝐵 ≠ 0 ) |
| 200 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → 𝐷 ∈ ℝ ) |
| 201 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → 𝐵 ∈ ℝ ) |
| 202 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → 0 ≤ 𝐷 ) |
| 203 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → 0 ≤ 𝐵 ) |
| 204 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 205 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 206 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 207 |
1 206
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 208 |
207
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 209 |
208
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑃 = 0 ) |
| 210 |
209
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ¬ 𝑃 = 0 ) |
| 211 |
81 28 23
|
subdid |
⊢ ( 𝜑 → ( 𝑃 · ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = ( ( 𝑃 · ( 𝐷 ↑ 2 ) ) − ( 𝑃 · ( 𝐵 ↑ 2 ) ) ) ) |
| 212 |
81 28
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · ( 𝐷 ↑ 2 ) ) ∈ ℂ ) |
| 213 |
26 28
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 𝐷 ↑ 2 ) ) ∈ ℂ ) |
| 214 |
81 23
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 215 |
20 23
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 216 |
23 28
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) · ( 𝐷 ↑ 2 ) ) = ( ( 𝐷 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
| 217 |
8
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( 𝐴 ↑ 2 ) ) = ( 𝑃 − ( 𝐴 ↑ 2 ) ) ) |
| 218 |
26 23
|
pncan2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( 𝐴 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) ) |
| 219 |
217 218
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑃 − ( 𝐴 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) ) |
| 220 |
219
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑃 − ( 𝐴 ↑ 2 ) ) · ( 𝐷 ↑ 2 ) ) = ( ( 𝐵 ↑ 2 ) · ( 𝐷 ↑ 2 ) ) ) |
| 221 |
9
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) = ( 𝑃 − ( 𝐶 ↑ 2 ) ) ) |
| 222 |
20 28
|
pncan2d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) = ( 𝐷 ↑ 2 ) ) |
| 223 |
221 222
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑃 − ( 𝐶 ↑ 2 ) ) = ( 𝐷 ↑ 2 ) ) |
| 224 |
223
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑃 − ( 𝐶 ↑ 2 ) ) · ( 𝐵 ↑ 2 ) ) = ( ( 𝐷 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
| 225 |
216 220 224
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑃 − ( 𝐴 ↑ 2 ) ) · ( 𝐷 ↑ 2 ) ) = ( ( 𝑃 − ( 𝐶 ↑ 2 ) ) · ( 𝐵 ↑ 2 ) ) ) |
| 226 |
81 26 28
|
subdird |
⊢ ( 𝜑 → ( ( 𝑃 − ( 𝐴 ↑ 2 ) ) · ( 𝐷 ↑ 2 ) ) = ( ( 𝑃 · ( 𝐷 ↑ 2 ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐷 ↑ 2 ) ) ) ) |
| 227 |
81 20 23
|
subdird |
⊢ ( 𝜑 → ( ( 𝑃 − ( 𝐶 ↑ 2 ) ) · ( 𝐵 ↑ 2 ) ) = ( ( 𝑃 · ( 𝐵 ↑ 2 ) ) − ( ( 𝐶 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) ) |
| 228 |
225 226 227
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑃 · ( 𝐷 ↑ 2 ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐷 ↑ 2 ) ) ) = ( ( 𝑃 · ( 𝐵 ↑ 2 ) ) − ( ( 𝐶 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) ) |
| 229 |
212 213 214 215 228
|
subeqxfrd |
⊢ ( 𝜑 → ( ( 𝑃 · ( 𝐷 ↑ 2 ) ) − ( 𝑃 · ( 𝐵 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐷 ↑ 2 ) ) − ( ( 𝐶 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) ) |
| 230 |
211 229
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 · ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐷 ↑ 2 ) ) − ( ( 𝐶 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) ) |
| 231 |
25 27
|
sqmuld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐷 ↑ 2 ) ) ) |
| 232 |
19 22
|
sqmuld |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) ↑ 2 ) = ( ( 𝐶 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
| 233 |
231 232
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) ↑ 2 ) − ( ( 𝐶 · 𝐵 ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐷 ↑ 2 ) ) − ( ( 𝐶 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) ) |
| 234 |
25 27
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
| 235 |
19 22
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 236 |
|
subsq |
⊢ ( ( ( 𝐴 · 𝐷 ) ∈ ℂ ∧ ( 𝐶 · 𝐵 ) ∈ ℂ ) → ( ( ( 𝐴 · 𝐷 ) ↑ 2 ) − ( ( 𝐶 · 𝐵 ) ↑ 2 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) · ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ) |
| 237 |
234 235 236
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) ↑ 2 ) − ( ( 𝐶 · 𝐵 ) ↑ 2 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) · ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ) |
| 238 |
230 233 237
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝑃 · ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) · ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ) |
| 239 |
238
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( 𝑃 · ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) · ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ) |
| 240 |
234
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
| 241 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ∧ ¬ ( 𝐴 · 𝐷 ) = ( 𝐶 · 𝐵 ) ) → 𝜑 ) |
| 242 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ∧ ¬ ( 𝐴 · 𝐷 ) = ( 𝐶 · 𝐵 ) ) → ¬ ( 𝐴 · 𝐷 ) = ( 𝐶 · 𝐵 ) ) |
| 243 |
242
|
neqned |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ∧ ¬ ( 𝐴 · 𝐷 ) = ( 𝐶 · 𝐵 ) ) → ( 𝐴 · 𝐷 ) ≠ ( 𝐶 · 𝐵 ) ) |
| 244 |
90 91
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ∈ ℤ ) |
| 245 |
|
dvdssqim |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) → ( 𝑃 ↑ 2 ) ∥ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 246 |
80 244 245
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) → ( 𝑃 ↑ 2 ) ∥ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 247 |
246
|
imp |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( 𝑃 ↑ 2 ) ∥ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) |
| 248 |
247
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ∧ ¬ ( 𝐴 · 𝐷 ) = ( 𝐶 · 𝐵 ) ) → ( 𝑃 ↑ 2 ) ∥ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) |
| 249 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐷 ) ≠ ( 𝐶 · 𝐵 ) ) → ( 𝑃 ↑ 2 ) ∈ ℤ ) |
| 250 |
244
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐷 ) ≠ ( 𝐶 · 𝐵 ) ) → ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ∈ ℤ ) |
| 251 |
234
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐷 ) ≠ ( 𝐶 · 𝐵 ) ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
| 252 |
235
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐷 ) ≠ ( 𝐶 · 𝐵 ) ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 253 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐷 ) ≠ ( 𝐶 · 𝐵 ) ) → ( 𝐴 · 𝐷 ) ≠ ( 𝐶 · 𝐵 ) ) |
| 254 |
251 252 253
|
subne0d |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐷 ) ≠ ( 𝐶 · 𝐵 ) ) → ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ≠ 0 ) |
| 255 |
250 254
|
znsqcld |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐷 ) ≠ ( 𝐶 · 𝐵 ) ) → ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ∈ ℕ ) |
| 256 |
|
dvdsle |
⊢ ( ( ( 𝑃 ↑ 2 ) ∈ ℤ ∧ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ∈ ℕ ) → ( ( 𝑃 ↑ 2 ) ∥ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) → ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 257 |
249 255 256
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐷 ) ≠ ( 𝐶 · 𝐵 ) ) → ( ( 𝑃 ↑ 2 ) ∥ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) → ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 258 |
257
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐷 ) ≠ ( 𝐶 · 𝐵 ) ) ∧ ( 𝑃 ↑ 2 ) ∥ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) → ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) |
| 259 |
241 243 248 258
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ∧ ¬ ( 𝐴 · 𝐷 ) = ( 𝐶 · 𝐵 ) ) → ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) |
| 260 |
41 43
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐷 ) ∈ ℝ ) |
| 261 |
11 13
|
remulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
| 262 |
260 261
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ∈ ℝ ) |
| 263 |
262
|
resqcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |
| 264 |
62
|
nnrpd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 265 |
128 264
|
rpmulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℝ+ ) |
| 266 |
67
|
nnrpd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 267 |
58
|
nnrpd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
| 268 |
266 267
|
rpmulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝐷 ) ∈ ℝ+ ) |
| 269 |
265 268
|
rpaddcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ∈ ℝ+ ) |
| 270 |
|
2z |
⊢ 2 ∈ ℤ |
| 271 |
270
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 272 |
269 271
|
rpexpcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) ∈ ℝ+ ) |
| 273 |
263 272
|
ltaddrp2d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) < ( ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 274 |
|
bhmafibid2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 275 |
41 13 11 43 274
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 276 |
75 275
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑃 · 𝑃 ) = ( ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 277 |
83
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) = ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ) |
| 278 |
277
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) = ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) |
| 279 |
278
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) = ( ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 280 |
276 279
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑃 · 𝑃 ) = ( ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 281 |
273 280
|
breqtrrd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) < ( 𝑃 · 𝑃 ) ) |
| 282 |
281 82
|
breqtrrd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) < ( 𝑃 ↑ 2 ) ) |
| 283 |
241 282
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ∧ ¬ ( 𝐴 · 𝐷 ) = ( 𝐶 · 𝐵 ) ) → ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) < ( 𝑃 ↑ 2 ) ) |
| 284 |
263 101
|
ltnled |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) < ( 𝑃 ↑ 2 ) ↔ ¬ ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 285 |
241 284
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ∧ ¬ ( 𝐴 · 𝐷 ) = ( 𝐶 · 𝐵 ) ) → ( ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) < ( 𝑃 ↑ 2 ) ↔ ¬ ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) ) |
| 286 |
283 285
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ∧ ¬ ( 𝐴 · 𝐷 ) = ( 𝐶 · 𝐵 ) ) → ¬ ( 𝑃 ↑ 2 ) ≤ ( ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ↑ 2 ) ) |
| 287 |
259 286
|
condan |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 · 𝐷 ) = ( 𝐶 · 𝐵 ) ) |
| 288 |
240 287
|
subeq0bd |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) = 0 ) |
| 289 |
288
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) · ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) · 0 ) ) |
| 290 |
234 235
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ∈ ℂ ) |
| 291 |
290
|
mul01d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) · 0 ) = 0 ) |
| 292 |
291
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) · 0 ) = 0 ) |
| 293 |
239 289 292
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( 𝑃 · ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = 0 ) |
| 294 |
28 23
|
subcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 295 |
81 294
|
mul0ord |
⊢ ( 𝜑 → ( ( 𝑃 · ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = 0 ↔ ( 𝑃 = 0 ∨ ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ) ) ) |
| 296 |
295
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( ( 𝑃 · ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = 0 ↔ ( 𝑃 = 0 ∨ ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ) ) ) |
| 297 |
293 296
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( 𝑃 = 0 ∨ ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ) ) |
| 298 |
297
|
ord |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( ¬ 𝑃 = 0 → ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ) ) |
| 299 |
210 298
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ) |
| 300 |
204 205 299
|
subeq0d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( 𝐷 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 301 |
200 201 202 203 300
|
sq11d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → 𝐷 = 𝐵 ) |
| 302 |
301
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 · 𝐷 ) = ( 𝐴 · 𝐵 ) ) |
| 303 |
302 287
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → ( 𝐴 · 𝐵 ) = ( 𝐶 · 𝐵 ) ) |
| 304 |
196 197 198 199 303
|
mulcan2ad |
⊢ ( ( 𝜑 ∧ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) → 𝐴 = 𝐶 ) |
| 305 |
138 164
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℤ ) |
| 306 |
|
dvdsmul1 |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℤ ) → 𝑃 ∥ ( 𝑃 · ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 307 |
80 305 306
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∥ ( 𝑃 · ( ( 𝐷 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 308 |
307 238
|
breqtrd |
⊢ ( 𝜑 → 𝑃 ∥ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) · ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ) |
| 309 |
|
euclemma |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ∈ ℤ ∧ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ∈ ℤ ) → ( 𝑃 ∥ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) · ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ↔ ( 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ∨ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ) ) |
| 310 |
1 92 244 309
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) · ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ↔ ( 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ∨ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ) ) |
| 311 |
308 310
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ∨ 𝑃 ∥ ( ( 𝐴 · 𝐷 ) − ( 𝐶 · 𝐵 ) ) ) ) |
| 312 |
195 304 311
|
mpjaodan |
⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
| 313 |
312
|
oveq1d |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐶 ↑ 2 ) ) |
| 314 |
313
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 − ( 𝐴 ↑ 2 ) ) = ( 𝑃 − ( 𝐶 ↑ 2 ) ) ) |
| 315 |
314 219 223
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) = ( 𝐷 ↑ 2 ) ) |
| 316 |
13 43 17 130 315
|
sq11d |
⊢ ( 𝜑 → 𝐵 = 𝐷 ) |
| 317 |
312 316
|
jca |
⊢ ( 𝜑 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |