| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioombl1.b |
⊢ 𝐵 = ( 𝐴 (,) +∞ ) |
| 2 |
|
ioombl1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
ioombl1.e |
⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) |
| 4 |
|
ioombl1.v |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 5 |
|
ioombl1.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 6 |
|
ioombl1.s |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
| 7 |
|
ioombl1.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
| 8 |
|
ioombl1.u |
⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) |
| 9 |
|
ioombl1.f1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 10 |
|
ioombl1.f2 |
⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) |
| 11 |
|
ioombl1.f3 |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
| 12 |
|
ioombl1.p |
⊢ 𝑃 = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) |
| 13 |
|
ioombl1.q |
⊢ 𝑄 = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) |
| 14 |
|
ioombl1.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) |
| 15 |
|
ioombl1.h |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) |
| 16 |
|
inss1 |
⊢ ( 𝐸 ∩ 𝐵 ) ⊆ 𝐸 |
| 17 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∩ 𝐵 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) ∈ ℝ ) |
| 18 |
16 3 4 17
|
mp3an2i |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) ∈ ℝ ) |
| 19 |
|
difss |
⊢ ( 𝐸 ∖ 𝐵 ) ⊆ 𝐸 |
| 20 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∖ 𝐵 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ∈ ℝ ) |
| 21 |
19 3 4 20
|
mp3an2i |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ∈ ℝ ) |
| 22 |
18 21
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ) ∈ ℝ ) |
| 23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
ioombl1lem2 |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| 24 |
5
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 25 |
4 24
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ ) |
| 26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
ioombl1lem1 |
⊢ ( 𝜑 → ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ) |
| 27 |
26
|
simpld |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 28 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) |
| 29 |
28 7
|
ovolsf |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 30 |
27 29
|
syl |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 31 |
30
|
frnd |
⊢ ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) ) |
| 32 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 33 |
31 32
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
| 34 |
|
1nn |
⊢ 1 ∈ ℕ |
| 35 |
30
|
fdmd |
⊢ ( 𝜑 → dom 𝑇 = ℕ ) |
| 36 |
34 35
|
eleqtrrid |
⊢ ( 𝜑 → 1 ∈ dom 𝑇 ) |
| 37 |
36
|
ne0d |
⊢ ( 𝜑 → dom 𝑇 ≠ ∅ ) |
| 38 |
|
dm0rn0 |
⊢ ( dom 𝑇 = ∅ ↔ ran 𝑇 = ∅ ) |
| 39 |
38
|
necon3bii |
⊢ ( dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅ ) |
| 40 |
37 39
|
sylib |
⊢ ( 𝜑 → ran 𝑇 ≠ ∅ ) |
| 41 |
30
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 42 |
32 41
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑗 ) ∈ ℝ ) |
| 43 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) |
| 44 |
43 6
|
ovolsf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 45 |
9 44
|
syl |
⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 46 |
45
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑆 ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 47 |
32 46
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
| 48 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| 49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
| 50 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 51 |
49 50
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 52 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝜑 ) |
| 53 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ ) |
| 54 |
28
|
ovolfsf |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 55 |
27 54
|
syl |
⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 56 |
55
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ) |
| 57 |
32 56
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℝ ) |
| 58 |
52 53 57
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℝ ) |
| 59 |
43
|
ovolfsf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 60 |
9 59
|
syl |
⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 61 |
60
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ) |
| 62 |
|
elrege0 |
⊢ ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) ) |
| 63 |
61 62
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) ) |
| 64 |
63
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
| 65 |
52 53 64
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
| 66 |
26
|
simprd |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 67 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐻 ) = ( ( abs ∘ − ) ∘ 𝐻 ) |
| 68 |
67
|
ovolfsf |
⊢ ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 69 |
66 68
|
syl |
⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 70 |
69
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ) |
| 71 |
|
elrege0 |
⊢ ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) |
| 72 |
70 71
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) |
| 73 |
72
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) |
| 74 |
72
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℝ ) |
| 75 |
57 74
|
addge01d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ↔ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ≤ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) ) |
| 76 |
73 75
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ≤ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) |
| 77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
ioombl1lem3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) = ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 78 |
76 77
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 79 |
52 53 78
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 80 |
51 58 65 79
|
serle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑗 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑗 ) ) |
| 81 |
7
|
fveq1i |
⊢ ( 𝑇 ‘ 𝑗 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑗 ) |
| 82 |
6
|
fveq1i |
⊢ ( 𝑆 ‘ 𝑗 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑗 ) |
| 83 |
80 81 82
|
3brtr4g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑗 ) ≤ ( 𝑆 ‘ 𝑗 ) ) |
| 84 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 85 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 86 |
63
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 87 |
45
|
frnd |
⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 88 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 89 |
87 88
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
| 90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ran 𝑆 ⊆ ℝ* ) |
| 91 |
45
|
ffnd |
⊢ ( 𝜑 → 𝑆 Fn ℕ ) |
| 92 |
|
fnfvelrn |
⊢ ( ( 𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ran 𝑆 ) |
| 93 |
91 92
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ran 𝑆 ) |
| 94 |
|
supxrub |
⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( 𝑆 ‘ 𝑘 ) ∈ ran 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 95 |
90 93 94
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 96 |
95
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 97 |
|
brralrspcev |
⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) |
| 98 |
23 96 97
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) |
| 99 |
50 6 84 85 64 86 98
|
isumsup2 |
⊢ ( 𝜑 → 𝑆 ⇝ sup ( ran 𝑆 , ℝ , < ) ) |
| 100 |
87 32
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ ) |
| 101 |
45
|
fdmd |
⊢ ( 𝜑 → dom 𝑆 = ℕ ) |
| 102 |
34 101
|
eleqtrrid |
⊢ ( 𝜑 → 1 ∈ dom 𝑆 ) |
| 103 |
102
|
ne0d |
⊢ ( 𝜑 → dom 𝑆 ≠ ∅ ) |
| 104 |
|
dm0rn0 |
⊢ ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ ) |
| 105 |
104
|
necon3bii |
⊢ ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ ) |
| 106 |
103 105
|
sylib |
⊢ ( 𝜑 → ran 𝑆 ≠ ∅ ) |
| 107 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑆 ‘ 𝑘 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 108 |
107
|
ralrn |
⊢ ( 𝑆 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 109 |
91 108
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 110 |
109
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 111 |
98 110
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) |
| 112 |
|
supxrre |
⊢ ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) |
| 113 |
100 106 111 112
|
syl3anc |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) |
| 114 |
99 113
|
breqtrrd |
⊢ ( 𝜑 → 𝑆 ⇝ sup ( ran 𝑆 , ℝ* , < ) ) |
| 115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑆 ⇝ sup ( ran 𝑆 , ℝ* , < ) ) |
| 116 |
6 115
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ⇝ sup ( ran 𝑆 , ℝ* , < ) ) |
| 117 |
64
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
| 118 |
86
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 119 |
50 49 116 117 118
|
climserle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 120 |
82 119
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑆 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 121 |
42 47 48 83 120
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 122 |
121
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 123 |
|
brralrspcev |
⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) |
| 124 |
23 122 123
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) |
| 125 |
30
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn ℕ ) |
| 126 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑇 ‘ 𝑗 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 127 |
126
|
ralrn |
⊢ ( 𝑇 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 128 |
125 127
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 129 |
128
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑇 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 130 |
124 129
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ) |
| 131 |
33 40 130
|
suprcld |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ , < ) ∈ ℝ ) |
| 132 |
67 8
|
ovolsf |
⊢ ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 133 |
66 132
|
syl |
⊢ ( 𝜑 → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 134 |
133
|
frnd |
⊢ ( 𝜑 → ran 𝑈 ⊆ ( 0 [,) +∞ ) ) |
| 135 |
134 32
|
sstrdi |
⊢ ( 𝜑 → ran 𝑈 ⊆ ℝ ) |
| 136 |
133
|
fdmd |
⊢ ( 𝜑 → dom 𝑈 = ℕ ) |
| 137 |
34 136
|
eleqtrrid |
⊢ ( 𝜑 → 1 ∈ dom 𝑈 ) |
| 138 |
137
|
ne0d |
⊢ ( 𝜑 → dom 𝑈 ≠ ∅ ) |
| 139 |
|
dm0rn0 |
⊢ ( dom 𝑈 = ∅ ↔ ran 𝑈 = ∅ ) |
| 140 |
139
|
necon3bii |
⊢ ( dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅ ) |
| 141 |
138 140
|
sylib |
⊢ ( 𝜑 → ran 𝑈 ≠ ∅ ) |
| 142 |
133
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑈 ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 143 |
32 142
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑈 ‘ 𝑗 ) ∈ ℝ ) |
| 144 |
52 53 74
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℝ ) |
| 145 |
|
elrege0 |
⊢ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ) ) |
| 146 |
56 145
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ) ) |
| 147 |
146
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ) |
| 148 |
74 57
|
addge02d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ↔ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ≤ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) ) |
| 149 |
147 148
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ≤ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) |
| 150 |
149 77
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 151 |
52 53 150
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) ) |
| 152 |
51 144 65 151
|
serle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑗 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑗 ) ) |
| 153 |
8
|
fveq1i |
⊢ ( 𝑈 ‘ 𝑗 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑗 ) |
| 154 |
152 153 82
|
3brtr4g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑈 ‘ 𝑗 ) ≤ ( 𝑆 ‘ 𝑗 ) ) |
| 155 |
143 47 48 154 120
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑈 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 156 |
155
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 157 |
|
brralrspcev |
⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) |
| 158 |
23 156 157
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) |
| 159 |
133
|
ffnd |
⊢ ( 𝜑 → 𝑈 Fn ℕ ) |
| 160 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑈 ‘ 𝑗 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 161 |
160
|
ralrn |
⊢ ( 𝑈 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 162 |
159 161
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 163 |
162
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝑈 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 164 |
158 163
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ) |
| 165 |
135 141 164
|
suprcld |
⊢ ( 𝜑 → sup ( ran 𝑈 , ℝ , < ) ∈ ℝ ) |
| 166 |
|
ssralv |
⊢ ( ( 𝐸 ∩ 𝐵 ) ⊆ 𝐸 → ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 167 |
16 166
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 168 |
12
|
breq1i |
⊢ ( 𝑃 < 𝑥 ↔ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ) |
| 169 |
|
ovolfcl |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 170 |
9 169
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 171 |
170
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 172 |
12 171
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
| 173 |
172
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
| 174 |
16 3
|
sstrid |
⊢ ( 𝜑 → ( 𝐸 ∩ 𝐵 ) ⊆ ℝ ) |
| 175 |
174
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 176 |
175
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 177 |
|
ltle |
⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑃 < 𝑥 → 𝑃 ≤ 𝑥 ) ) |
| 178 |
173 176 177
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 < 𝑥 → 𝑃 ≤ 𝑥 ) ) |
| 179 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 180 |
|
opex |
⊢ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ V |
| 181 |
14
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ V ) → ( 𝐺 ‘ 𝑛 ) = 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) |
| 182 |
179 180 181
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) = 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) |
| 183 |
182
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 1st ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) ) |
| 184 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 185 |
184 172
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ) |
| 186 |
170
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 187 |
13 186
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
| 188 |
185 187
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) |
| 189 |
|
op1stg |
⊢ ( ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ) → ( 1st ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 190 |
188 187 189
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 191 |
183 190
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 192 |
191
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 193 |
188
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) |
| 194 |
185
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ) |
| 195 |
174
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → ( 𝐸 ∩ 𝐵 ) ⊆ ℝ ) |
| 196 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) |
| 197 |
195 196
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 198 |
187
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝑄 ∈ ℝ ) |
| 199 |
|
min1 |
⊢ ( ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) |
| 200 |
194 198 199
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) |
| 201 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝐴 ∈ ℝ ) |
| 202 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 203 |
202
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝑥 ∈ 𝐵 ) |
| 204 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 205 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 206 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) ) |
| 207 |
204 205 206
|
sylancl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) ) |
| 208 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) |
| 209 |
|
ltpnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) |
| 210 |
209
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) → 𝑥 < +∞ ) |
| 211 |
210
|
pm4.71i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ 𝑥 < +∞ ) ) |
| 212 |
|
df-3an |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ∧ 𝑥 < +∞ ) ) |
| 213 |
211 212
|
bitr4i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 214 |
207 208 213
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ) ) |
| 215 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) → 𝐴 < 𝑥 ) |
| 216 |
214 215
|
biimtrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝐴 < 𝑥 ) ) |
| 217 |
216
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → ( 𝑥 ∈ 𝐵 → 𝐴 < 𝑥 ) ) |
| 218 |
203 217
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝐴 < 𝑥 ) |
| 219 |
201 197 218
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝐴 ≤ 𝑥 ) |
| 220 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → 𝑃 ≤ 𝑥 ) |
| 221 |
|
breq1 |
⊢ ( 𝐴 = if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) → ( 𝐴 ≤ 𝑥 ↔ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑥 ) ) |
| 222 |
|
breq1 |
⊢ ( 𝑃 = if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) → ( 𝑃 ≤ 𝑥 ↔ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑥 ) ) |
| 223 |
221 222
|
ifboth |
⊢ ( ( 𝐴 ≤ 𝑥 ∧ 𝑃 ≤ 𝑥 ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑥 ) |
| 224 |
219 220 223
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑥 ) |
| 225 |
193 194 197 200 224
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ 𝑥 ) |
| 226 |
192 225
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 227 |
226
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ≤ 𝑥 → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 228 |
178 227
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 < 𝑥 → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 229 |
168 228
|
biimtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 230 |
13
|
breq2i |
⊢ ( 𝑥 < 𝑄 ↔ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 231 |
187
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
| 232 |
|
ltle |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑄 ∈ ℝ ) → ( 𝑥 < 𝑄 → 𝑥 ≤ 𝑄 ) ) |
| 233 |
176 231 232
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < 𝑄 → 𝑥 ≤ 𝑄 ) ) |
| 234 |
230 233
|
biimtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ≤ 𝑄 ) ) |
| 235 |
182
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 2nd ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) ) |
| 236 |
|
op2ndg |
⊢ ( ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ) → ( 2nd ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = 𝑄 ) |
| 237 |
188 187 236
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) = 𝑄 ) |
| 238 |
235 237
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) = 𝑄 ) |
| 239 |
238
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) = 𝑄 ) |
| 240 |
239
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ↔ 𝑥 ≤ 𝑄 ) ) |
| 241 |
234 240
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 242 |
229 241
|
anim12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 243 |
242
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 244 |
243
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 245 |
167 244
|
syl5 |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 246 |
|
ovolfioo |
⊢ ( ( 𝐸 ⊆ ℝ ∧ 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ↔ ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 247 |
3 9 246
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ↔ ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 248 |
|
ovolficc |
⊢ ( ( ( 𝐸 ∩ 𝐵 ) ⊆ ℝ ∧ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( 𝐸 ∩ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 249 |
174 27 248
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 ∩ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( 𝐸 ∩ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 250 |
245 247 249
|
3imtr4d |
⊢ ( 𝜑 → ( 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) → ( 𝐸 ∩ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) ) |
| 251 |
10 250
|
mpd |
⊢ ( 𝜑 → ( 𝐸 ∩ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) |
| 252 |
7
|
ovollb2 |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐸 ∩ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) → ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 253 |
27 251 252
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 254 |
|
supxrre |
⊢ ( ( ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ) → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) |
| 255 |
33 40 130 254
|
syl3anc |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) |
| 256 |
253 255
|
breqtrd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) ≤ sup ( ran 𝑇 , ℝ , < ) ) |
| 257 |
|
ssralv |
⊢ ( ( 𝐸 ∖ 𝐵 ) ⊆ 𝐸 → ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 258 |
19 257
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 259 |
172
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
| 260 |
19 3
|
sstrid |
⊢ ( 𝜑 → ( 𝐸 ∖ 𝐵 ) ⊆ ℝ ) |
| 261 |
260
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 262 |
261
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 263 |
259 262 177
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 < 𝑥 → 𝑃 ≤ 𝑥 ) ) |
| 264 |
168 263
|
biimtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 → 𝑃 ≤ 𝑥 ) ) |
| 265 |
|
opex |
⊢ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ V |
| 266 |
15
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ V ) → ( 𝐻 ‘ 𝑛 ) = 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) |
| 267 |
179 265 266
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐻 ‘ 𝑛 ) = 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) |
| 268 |
267
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) = ( 1st ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) ) |
| 269 |
|
op1stg |
⊢ ( ( 𝑃 ∈ ℝ ∧ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) → ( 1st ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = 𝑃 ) |
| 270 |
172 188 269
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = 𝑃 ) |
| 271 |
268 270
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) = 𝑃 ) |
| 272 |
271
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) = 𝑃 ) |
| 273 |
272
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ↔ 𝑃 ≤ 𝑥 ) ) |
| 274 |
264 273
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 → ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 275 |
187
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
| 276 |
262 275 232
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < 𝑄 → 𝑥 ≤ 𝑄 ) ) |
| 277 |
260
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ( 𝐸 ∖ 𝐵 ) ⊆ ℝ ) |
| 278 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) |
| 279 |
277 278
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ∈ ℝ ) |
| 280 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝐴 ∈ ℝ ) |
| 281 |
172
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑃 ∈ ℝ ) |
| 282 |
280 281
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ) |
| 283 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝐵 ) |
| 284 |
283
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ¬ 𝑥 ∈ 𝐵 ) |
| 285 |
279
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ( 𝐴 < 𝑥 ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ) ) |
| 286 |
214
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ) ) ) |
| 287 |
285 286
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ( 𝐴 < 𝑥 ↔ 𝑥 ∈ 𝐵 ) ) |
| 288 |
284 287
|
mtbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ¬ 𝐴 < 𝑥 ) |
| 289 |
279 280 288
|
nltled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ≤ 𝐴 ) |
| 290 |
|
max2 |
⊢ ( ( 𝑃 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 𝐴 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) |
| 291 |
281 280 290
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝐴 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) |
| 292 |
279 280 282 289 291
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) |
| 293 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ≤ 𝑄 ) |
| 294 |
|
breq2 |
⊢ ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) → ( 𝑥 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ↔ 𝑥 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) ) |
| 295 |
|
breq2 |
⊢ ( 𝑄 = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) → ( 𝑥 ≤ 𝑄 ↔ 𝑥 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) ) |
| 296 |
294 295
|
ifboth |
⊢ ( ( 𝑥 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∧ 𝑥 ≤ 𝑄 ) → 𝑥 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 297 |
292 293 296
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 298 |
267
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) = ( 2nd ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) ) |
| 299 |
|
op2ndg |
⊢ ( ( 𝑃 ∈ ℝ ∧ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) → ( 2nd ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 300 |
172 188 299
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 301 |
298 300
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 302 |
301
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
| 303 |
297 302
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄 ) ) → 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) |
| 304 |
303
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ≤ 𝑄 → 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) |
| 305 |
276 304
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < 𝑄 → 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) |
| 306 |
230 305
|
biimtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) |
| 307 |
274 306
|
anim12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
| 308 |
307
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
| 309 |
308
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
| 310 |
258 309
|
syl5 |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐸 ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
| 311 |
|
ovolficc |
⊢ ( ( ( 𝐸 ∖ 𝐵 ) ⊆ ℝ ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( 𝐸 ∖ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐻 ) ↔ ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
| 312 |
260 66 311
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 ∖ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐻 ) ↔ ∀ 𝑥 ∈ ( 𝐸 ∖ 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
| 313 |
310 247 312
|
3imtr4d |
⊢ ( 𝜑 → ( 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) → ( 𝐸 ∖ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐻 ) ) ) |
| 314 |
10 313
|
mpd |
⊢ ( 𝜑 → ( 𝐸 ∖ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐻 ) ) |
| 315 |
8
|
ovollb2 |
⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐸 ∖ 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐻 ) ) → ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ* , < ) ) |
| 316 |
66 314 315
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ* , < ) ) |
| 317 |
|
supxrre |
⊢ ( ( ran 𝑈 ⊆ ℝ ∧ ran 𝑈 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ) → sup ( ran 𝑈 , ℝ* , < ) = sup ( ran 𝑈 , ℝ , < ) ) |
| 318 |
135 141 164 317
|
syl3anc |
⊢ ( 𝜑 → sup ( ran 𝑈 , ℝ* , < ) = sup ( ran 𝑈 , ℝ , < ) ) |
| 319 |
316 318
|
breqtrd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ , < ) ) |
| 320 |
18 21 131 165 256 319
|
le2addd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ) ≤ ( sup ( ran 𝑇 , ℝ , < ) + sup ( ran 𝑈 , ℝ , < ) ) ) |
| 321 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) = ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ) |
| 322 |
50 7 84 321 57 147 124
|
isumsup2 |
⊢ ( 𝜑 → 𝑇 ⇝ sup ( ran 𝑇 , ℝ , < ) ) |
| 323 |
|
seqex |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ∈ V |
| 324 |
6 323
|
eqeltri |
⊢ 𝑆 ∈ V |
| 325 |
324
|
a1i |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 326 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) = ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) |
| 327 |
50 8 84 326 74 73 158
|
isumsup2 |
⊢ ( 𝜑 → 𝑈 ⇝ sup ( ran 𝑈 , ℝ , < ) ) |
| 328 |
42
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ‘ 𝑗 ) ∈ ℂ ) |
| 329 |
143
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑈 ‘ 𝑗 ) ∈ ℂ ) |
| 330 |
57
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 331 |
52 53 330
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 332 |
74
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℂ ) |
| 333 |
52 53 332
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ∈ ℂ ) |
| 334 |
77
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) |
| 335 |
52 53 334
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑛 ) ) ) |
| 336 |
51 331 333 335
|
seradd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑗 ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑗 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑗 ) ) ) |
| 337 |
81 153
|
oveq12i |
⊢ ( ( 𝑇 ‘ 𝑗 ) + ( 𝑈 ‘ 𝑗 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑗 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑗 ) ) |
| 338 |
336 82 337
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑆 ‘ 𝑗 ) = ( ( 𝑇 ‘ 𝑗 ) + ( 𝑈 ‘ 𝑗 ) ) ) |
| 339 |
50 84 322 325 327 328 329 338
|
climadd |
⊢ ( 𝜑 → 𝑆 ⇝ ( sup ( ran 𝑇 , ℝ , < ) + sup ( ran 𝑈 , ℝ , < ) ) ) |
| 340 |
|
climuni |
⊢ ( ( 𝑆 ⇝ ( sup ( ran 𝑇 , ℝ , < ) + sup ( ran 𝑈 , ℝ , < ) ) ∧ 𝑆 ⇝ sup ( ran 𝑆 , ℝ* , < ) ) → ( sup ( ran 𝑇 , ℝ , < ) + sup ( ran 𝑈 , ℝ , < ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| 341 |
339 114 340
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ , < ) + sup ( ran 𝑈 , ℝ , < ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| 342 |
320 341
|
breqtrd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 343 |
22 23 25 342 11
|
letrd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |