Metamath Proof Explorer


Theorem prmreclem3

Description: Lemma for prmrec . The main inequality established here is # M <_ # { x e. M | ( Qx ) = 1 } x. sqrt N , where { x e. M | ( Qx ) = 1 } is the set of squarefree numbers in M . This is demonstrated by the map y |-> <. y / ( Qy ) ^ 2 , ( Qy ) >. where Qy is the largest number whose square divides y . (Contributed by Mario Carneiro, 5-Aug-2014)

Ref Expression
Hypotheses prmrec.1 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 1 / 𝑛 ) , 0 ) )
prmrec.2 ( 𝜑𝐾 ∈ ℕ )
prmrec.3 ( 𝜑𝑁 ∈ ℕ )
prmrec.4 𝑀 = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝𝑛 }
prmreclem2.5 𝑄 = ( 𝑛 ∈ ℕ ↦ sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑛 } , ℝ , < ) )
Assertion prmreclem3 ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 prmrec.1 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 1 / 𝑛 ) , 0 ) )
2 prmrec.2 ( 𝜑𝐾 ∈ ℕ )
3 prmrec.3 ( 𝜑𝑁 ∈ ℕ )
4 prmrec.4 𝑀 = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝𝑛 }
5 prmreclem2.5 𝑄 = ( 𝑛 ∈ ℕ ↦ sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑛 } , ℝ , < ) )
6 fzfi ( 1 ... 𝑁 ) ∈ Fin
7 4 ssrab3 𝑀 ⊆ ( 1 ... 𝑁 )
8 ssfi ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝑀 ⊆ ( 1 ... 𝑁 ) ) → 𝑀 ∈ Fin )
9 6 7 8 mp2an 𝑀 ∈ Fin
10 hashcl ( 𝑀 ∈ Fin → ( ♯ ‘ 𝑀 ) ∈ ℕ0 )
11 9 10 ax-mp ( ♯ ‘ 𝑀 ) ∈ ℕ0
12 11 nn0rei ( ♯ ‘ 𝑀 ) ∈ ℝ
13 12 a1i ( 𝜑 → ( ♯ ‘ 𝑀 ) ∈ ℝ )
14 2nn 2 ∈ ℕ
15 2 nnnn0d ( 𝜑𝐾 ∈ ℕ0 )
16 nnexpcl ( ( 2 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 2 ↑ 𝐾 ) ∈ ℕ )
17 14 15 16 sylancr ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℕ )
18 17 nnnn0d ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℕ0 )
19 3 nnrpd ( 𝜑𝑁 ∈ ℝ+ )
20 19 rpsqrtcld ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℝ+ )
21 20 rprege0d ( 𝜑 → ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) )
22 flge0nn0 ( ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℕ0 )
23 21 22 syl ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℕ0 )
24 18 23 nn0mulcld ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℕ0 )
25 24 nn0red ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ )
26 17 nnred ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℝ )
27 20 rpred ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℝ )
28 26 27 remulcld ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ∈ ℝ )
29 ssrab2 { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ⊆ 𝑀
30 ssfi ( ( 𝑀 ∈ Fin ∧ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ⊆ 𝑀 ) → { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ∈ Fin )
31 9 29 30 mp2an { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ∈ Fin
32 hashcl ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ∈ Fin → ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) ∈ ℕ0 )
33 31 32 ax-mp ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) ∈ ℕ0
34 33 nn0rei ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) ∈ ℝ
35 23 nn0red ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ )
36 remulcl ( ( ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) ∈ ℝ ∧ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ) → ( ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ )
37 34 35 36 sylancr ( 𝜑 → ( ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ )
38 fzfi ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ Fin
39 xpfi ( ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ∈ Fin ∧ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ Fin ) → ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin )
40 31 38 39 mp2an ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin
41 fveqeq2 ( 𝑥 = ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) → ( ( 𝑄𝑥 ) = 1 ↔ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) = 1 ) )
42 simpr ( ( 𝜑𝑦𝑀 ) → 𝑦𝑀 )
43 7 42 sseldi ( ( 𝜑𝑦𝑀 ) → 𝑦 ∈ ( 1 ... 𝑁 ) )
44 elfznn ( 𝑦 ∈ ( 1 ... 𝑁 ) → 𝑦 ∈ ℕ )
45 43 44 syl ( ( 𝜑𝑦𝑀 ) → 𝑦 ∈ ℕ )
46 5 prmreclem1 ( 𝑦 ∈ ℕ → ( ( 𝑄𝑦 ) ∈ ℕ ∧ ( ( 𝑄𝑦 ) ↑ 2 ) ∥ 𝑦 ∧ ( 𝑛 ∈ ( ℤ ‘ 2 ) → ¬ ( 𝑛 ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ) )
47 46 simp2d ( 𝑦 ∈ ℕ → ( ( 𝑄𝑦 ) ↑ 2 ) ∥ 𝑦 )
48 45 47 syl ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ↑ 2 ) ∥ 𝑦 )
49 46 simp1d ( 𝑦 ∈ ℕ → ( 𝑄𝑦 ) ∈ ℕ )
50 45 49 syl ( ( 𝜑𝑦𝑀 ) → ( 𝑄𝑦 ) ∈ ℕ )
51 50 nnsqcld ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℕ )
52 51 nnzd ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℤ )
53 51 nnne0d ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ↑ 2 ) ≠ 0 )
54 45 nnzd ( ( 𝜑𝑦𝑀 ) → 𝑦 ∈ ℤ )
55 dvdsval2 ( ( ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℤ ∧ ( ( 𝑄𝑦 ) ↑ 2 ) ≠ 0 ∧ 𝑦 ∈ ℤ ) → ( ( ( 𝑄𝑦 ) ↑ 2 ) ∥ 𝑦 ↔ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℤ ) )
56 52 53 54 55 syl3anc ( ( 𝜑𝑦𝑀 ) → ( ( ( 𝑄𝑦 ) ↑ 2 ) ∥ 𝑦 ↔ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℤ ) )
57 48 56 mpbid ( ( 𝜑𝑦𝑀 ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℤ )
58 nnre ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ )
59 nngt0 ( 𝑦 ∈ ℕ → 0 < 𝑦 )
60 58 59 jca ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) )
61 nnre ( ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℕ → ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℝ )
62 nngt0 ( ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℕ → 0 < ( ( 𝑄𝑦 ) ↑ 2 ) )
63 61 62 jca ( ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℕ → ( ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℝ ∧ 0 < ( ( 𝑄𝑦 ) ↑ 2 ) ) )
64 divgt0 ( ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ∧ ( ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℝ ∧ 0 < ( ( 𝑄𝑦 ) ↑ 2 ) ) ) → 0 < ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) )
65 60 63 64 syl2an ( ( 𝑦 ∈ ℕ ∧ ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℕ ) → 0 < ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) )
66 45 51 65 syl2anc ( ( 𝜑𝑦𝑀 ) → 0 < ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) )
67 elnnz ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℕ ↔ ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ 0 < ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) )
68 57 66 67 sylanbrc ( ( 𝜑𝑦𝑀 ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℕ )
69 68 nnred ( ( 𝜑𝑦𝑀 ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℝ )
70 45 nnred ( ( 𝜑𝑦𝑀 ) → 𝑦 ∈ ℝ )
71 3 nnred ( 𝜑𝑁 ∈ ℝ )
72 71 adantr ( ( 𝜑𝑦𝑀 ) → 𝑁 ∈ ℝ )
73 dvdsmul1 ( ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℤ ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∥ ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) · ( ( 𝑄𝑦 ) ↑ 2 ) ) )
74 57 52 73 syl2anc ( ( 𝜑𝑦𝑀 ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∥ ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) · ( ( 𝑄𝑦 ) ↑ 2 ) ) )
75 45 nncnd ( ( 𝜑𝑦𝑀 ) → 𝑦 ∈ ℂ )
76 51 nncnd ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℂ )
77 75 76 53 divcan1d ( ( 𝜑𝑦𝑀 ) → ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) · ( ( 𝑄𝑦 ) ↑ 2 ) ) = 𝑦 )
78 74 77 breqtrd ( ( 𝜑𝑦𝑀 ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∥ 𝑦 )
79 dvdsle ( ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∥ 𝑦 → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ≤ 𝑦 ) )
80 57 45 79 syl2anc ( ( 𝜑𝑦𝑀 ) → ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∥ 𝑦 → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ≤ 𝑦 ) )
81 78 80 mpd ( ( 𝜑𝑦𝑀 ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ≤ 𝑦 )
82 elfzle2 ( 𝑦 ∈ ( 1 ... 𝑁 ) → 𝑦𝑁 )
83 43 82 syl ( ( 𝜑𝑦𝑀 ) → 𝑦𝑁 )
84 69 70 72 81 83 letrd ( ( 𝜑𝑦𝑀 ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ≤ 𝑁 )
85 nnuz ℕ = ( ℤ ‘ 1 )
86 68 85 eleqtrdi ( ( 𝜑𝑦𝑀 ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ( ℤ ‘ 1 ) )
87 3 nnzd ( 𝜑𝑁 ∈ ℤ )
88 87 adantr ( ( 𝜑𝑦𝑀 ) → 𝑁 ∈ ℤ )
89 elfz5 ( ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ≤ 𝑁 ) )
90 86 88 89 syl2anc ( ( 𝜑𝑦𝑀 ) → ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ≤ 𝑁 ) )
91 84 90 mpbird ( ( 𝜑𝑦𝑀 ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) )
92 breq2 ( 𝑛 = 𝑦 → ( 𝑝𝑛𝑝𝑦 ) )
93 92 notbid ( 𝑛 = 𝑦 → ( ¬ 𝑝𝑛 ↔ ¬ 𝑝𝑦 ) )
94 93 ralbidv ( 𝑛 = 𝑦 → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝𝑛 ↔ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝𝑦 ) )
95 94 4 elrab2 ( 𝑦𝑀 ↔ ( 𝑦 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝𝑦 ) )
96 42 95 sylib ( ( 𝜑𝑦𝑀 ) → ( 𝑦 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝𝑦 ) )
97 96 simprd ( ( 𝜑𝑦𝑀 ) → ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝𝑦 )
98 78 adantr ( ( ( 𝜑𝑦𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∥ 𝑦 )
99 eldifi ( 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) → 𝑝 ∈ ℙ )
100 prmz ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ )
101 99 100 syl ( 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) → 𝑝 ∈ ℤ )
102 101 adantl ( ( ( 𝜑𝑦𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → 𝑝 ∈ ℤ )
103 57 adantr ( ( ( 𝜑𝑦𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℤ )
104 54 adantr ( ( ( 𝜑𝑦𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → 𝑦 ∈ ℤ )
105 dvdstr ( ( 𝑝 ∈ ℤ ∧ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∧ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∥ 𝑦 ) → 𝑝𝑦 ) )
106 102 103 104 105 syl3anc ( ( ( 𝜑𝑦𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( ( 𝑝 ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∧ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∥ 𝑦 ) → 𝑝𝑦 ) )
107 98 106 mpan2d ( ( ( 𝜑𝑦𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( 𝑝 ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) → 𝑝𝑦 ) )
108 107 con3d ( ( ( 𝜑𝑦𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( ¬ 𝑝𝑦 → ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) )
109 108 ralimdva ( ( 𝜑𝑦𝑀 ) → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝𝑦 → ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) )
110 97 109 mpd ( ( 𝜑𝑦𝑀 ) → ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) )
111 breq2 ( 𝑛 = ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) → ( 𝑝𝑛𝑝 ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) )
112 111 notbid ( 𝑛 = ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) → ( ¬ 𝑝𝑛 ↔ ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) )
113 112 ralbidv ( 𝑛 = ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝𝑛 ↔ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) )
114 113 4 elrab2 ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ 𝑀 ↔ ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) )
115 91 110 114 sylanbrc ( ( 𝜑𝑦𝑀 ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ 𝑀 )
116 5 prmreclem1 ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℕ → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ∈ ℕ ∧ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∧ ( 𝐴 ∈ ( ℤ ‘ 2 ) → ¬ ( 𝐴 ↑ 2 ) ∥ ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) / ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ) ) ) )
117 116 simp2d ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℕ → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) )
118 68 117 syl ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) )
119 116 simp1d ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ ℕ → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ∈ ℕ )
120 68 119 syl ( ( 𝜑𝑦𝑀 ) → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ∈ ℕ )
121 elnn1uz2 ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ∈ ℕ ↔ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) = 1 ∨ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ ‘ 2 ) ) )
122 120 121 sylib ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) = 1 ∨ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ ‘ 2 ) ) )
123 122 ord ( ( 𝜑𝑦𝑀 ) → ( ¬ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) = 1 → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ ‘ 2 ) ) )
124 5 prmreclem1 ( 𝑦 ∈ ℕ → ( ( 𝑄𝑦 ) ∈ ℕ ∧ ( ( 𝑄𝑦 ) ↑ 2 ) ∥ 𝑦 ∧ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ ‘ 2 ) → ¬ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ) )
125 124 simp3d ( 𝑦 ∈ ℕ → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ ‘ 2 ) → ¬ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) )
126 45 123 125 sylsyld ( ( 𝜑𝑦𝑀 ) → ( ¬ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) = 1 → ¬ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) )
127 118 126 mt4d ( ( 𝜑𝑦𝑀 ) → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ) = 1 )
128 41 115 127 elrabd ( ( 𝜑𝑦𝑀 ) → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } )
129 51 nnred ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℝ )
130 dvdsle ( ( ( ( 𝑄𝑦 ) ↑ 2 ) ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑄𝑦 ) ↑ 2 ) ∥ 𝑦 → ( ( 𝑄𝑦 ) ↑ 2 ) ≤ 𝑦 ) )
131 52 45 130 syl2anc ( ( 𝜑𝑦𝑀 ) → ( ( ( 𝑄𝑦 ) ↑ 2 ) ∥ 𝑦 → ( ( 𝑄𝑦 ) ↑ 2 ) ≤ 𝑦 ) )
132 48 131 mpd ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ↑ 2 ) ≤ 𝑦 )
133 129 70 72 132 83 letrd ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ↑ 2 ) ≤ 𝑁 )
134 72 recnd ( ( 𝜑𝑦𝑀 ) → 𝑁 ∈ ℂ )
135 134 sqsqrtd ( ( 𝜑𝑦𝑀 ) → ( ( √ ‘ 𝑁 ) ↑ 2 ) = 𝑁 )
136 133 135 breqtrrd ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) )
137 50 nnrpd ( ( 𝜑𝑦𝑀 ) → ( 𝑄𝑦 ) ∈ ℝ+ )
138 20 adantr ( ( 𝜑𝑦𝑀 ) → ( √ ‘ 𝑁 ) ∈ ℝ+ )
139 rprege0 ( ( 𝑄𝑦 ) ∈ ℝ+ → ( ( 𝑄𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑄𝑦 ) ) )
140 rprege0 ( ( √ ‘ 𝑁 ) ∈ ℝ+ → ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) )
141 le2sq ( ( ( ( 𝑄𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑄𝑦 ) ) ∧ ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) ) → ( ( 𝑄𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( ( 𝑄𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) ) )
142 139 140 141 syl2an ( ( ( 𝑄𝑦 ) ∈ ℝ+ ∧ ( √ ‘ 𝑁 ) ∈ ℝ+ ) → ( ( 𝑄𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( ( 𝑄𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) ) )
143 137 138 142 syl2anc ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( ( 𝑄𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) ) )
144 136 143 mpbird ( ( 𝜑𝑦𝑀 ) → ( 𝑄𝑦 ) ≤ ( √ ‘ 𝑁 ) )
145 27 adantr ( ( 𝜑𝑦𝑀 ) → ( √ ‘ 𝑁 ) ∈ ℝ )
146 50 nnzd ( ( 𝜑𝑦𝑀 ) → ( 𝑄𝑦 ) ∈ ℤ )
147 flge ( ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ ( 𝑄𝑦 ) ∈ ℤ ) → ( ( 𝑄𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( 𝑄𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) )
148 145 146 147 syl2anc ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( 𝑄𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) )
149 144 148 mpbid ( ( 𝜑𝑦𝑀 ) → ( 𝑄𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) )
150 50 85 eleqtrdi ( ( 𝜑𝑦𝑀 ) → ( 𝑄𝑦 ) ∈ ( ℤ ‘ 1 ) )
151 23 nn0zd ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℤ )
152 151 adantr ( ( 𝜑𝑦𝑀 ) → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℤ )
153 elfz5 ( ( ( 𝑄𝑦 ) ∈ ( ℤ ‘ 1 ) ∧ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℤ ) → ( ( 𝑄𝑦 ) ∈ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ↔ ( 𝑄𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) )
154 150 152 153 syl2anc ( ( 𝜑𝑦𝑀 ) → ( ( 𝑄𝑦 ) ∈ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ↔ ( 𝑄𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) )
155 149 154 mpbird ( ( 𝜑𝑦𝑀 ) → ( 𝑄𝑦 ) ∈ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) )
156 128 155 opelxpd ( ( 𝜑𝑦𝑀 ) → ⟨ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) , ( 𝑄𝑦 ) ⟩ ∈ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) )
157 156 ex ( 𝜑 → ( 𝑦𝑀 → ⟨ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) , ( 𝑄𝑦 ) ⟩ ∈ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) )
158 ovex ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) ∈ V
159 fvex ( 𝑄𝑦 ) ∈ V
160 158 159 opth ( ⟨ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) , ( 𝑄𝑦 ) ⟩ = ⟨ ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) , ( 𝑄𝑧 ) ⟩ ↔ ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) ∧ ( 𝑄𝑦 ) = ( 𝑄𝑧 ) ) )
161 oveq1 ( ( 𝑄𝑦 ) = ( 𝑄𝑧 ) → ( ( 𝑄𝑦 ) ↑ 2 ) = ( ( 𝑄𝑧 ) ↑ 2 ) )
162 oveq12 ( ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) ∧ ( ( 𝑄𝑦 ) ↑ 2 ) = ( ( 𝑄𝑧 ) ↑ 2 ) ) → ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) · ( ( 𝑄𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) · ( ( 𝑄𝑧 ) ↑ 2 ) ) )
163 161 162 sylan2 ( ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) ∧ ( 𝑄𝑦 ) = ( 𝑄𝑧 ) ) → ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) · ( ( 𝑄𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) · ( ( 𝑄𝑧 ) ↑ 2 ) ) )
164 160 163 sylbi ( ⟨ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) , ( 𝑄𝑦 ) ⟩ = ⟨ ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) , ( 𝑄𝑧 ) ⟩ → ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) · ( ( 𝑄𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) · ( ( 𝑄𝑧 ) ↑ 2 ) ) )
165 77 adantrr ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) · ( ( 𝑄𝑦 ) ↑ 2 ) ) = 𝑦 )
166 fz1ssnn ( 1 ... 𝑁 ) ⊆ ℕ
167 7 166 sstri 𝑀 ⊆ ℕ
168 simprr ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → 𝑧𝑀 )
169 167 168 sseldi ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → 𝑧 ∈ ℕ )
170 169 nncnd ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → 𝑧 ∈ ℂ )
171 5 prmreclem1 ( 𝑧 ∈ ℕ → ( ( 𝑄𝑧 ) ∈ ℕ ∧ ( ( 𝑄𝑧 ) ↑ 2 ) ∥ 𝑧 ∧ ( 2 ∈ ( ℤ ‘ 2 ) → ¬ ( 2 ↑ 2 ) ∥ ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) ) ) )
172 171 simp1d ( 𝑧 ∈ ℕ → ( 𝑄𝑧 ) ∈ ℕ )
173 169 172 syl ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → ( 𝑄𝑧 ) ∈ ℕ )
174 173 nnsqcld ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → ( ( 𝑄𝑧 ) ↑ 2 ) ∈ ℕ )
175 174 nncnd ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → ( ( 𝑄𝑧 ) ↑ 2 ) ∈ ℂ )
176 174 nnne0d ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → ( ( 𝑄𝑧 ) ↑ 2 ) ≠ 0 )
177 170 175 176 divcan1d ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → ( ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) · ( ( 𝑄𝑧 ) ↑ 2 ) ) = 𝑧 )
178 165 177 eqeq12d ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → ( ( ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) · ( ( 𝑄𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) · ( ( 𝑄𝑧 ) ↑ 2 ) ) ↔ 𝑦 = 𝑧 ) )
179 164 178 syl5ib ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → ( ⟨ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) , ( 𝑄𝑦 ) ⟩ = ⟨ ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) , ( 𝑄𝑧 ) ⟩ → 𝑦 = 𝑧 ) )
180 id ( 𝑦 = 𝑧𝑦 = 𝑧 )
181 fveq2 ( 𝑦 = 𝑧 → ( 𝑄𝑦 ) = ( 𝑄𝑧 ) )
182 181 oveq1d ( 𝑦 = 𝑧 → ( ( 𝑄𝑦 ) ↑ 2 ) = ( ( 𝑄𝑧 ) ↑ 2 ) )
183 180 182 oveq12d ( 𝑦 = 𝑧 → ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) )
184 183 181 opeq12d ( 𝑦 = 𝑧 → ⟨ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) , ( 𝑄𝑦 ) ⟩ = ⟨ ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) , ( 𝑄𝑧 ) ⟩ )
185 179 184 impbid1 ( ( 𝜑 ∧ ( 𝑦𝑀𝑧𝑀 ) ) → ( ⟨ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) , ( 𝑄𝑦 ) ⟩ = ⟨ ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) , ( 𝑄𝑧 ) ⟩ ↔ 𝑦 = 𝑧 ) )
186 185 ex ( 𝜑 → ( ( 𝑦𝑀𝑧𝑀 ) → ( ⟨ ( 𝑦 / ( ( 𝑄𝑦 ) ↑ 2 ) ) , ( 𝑄𝑦 ) ⟩ = ⟨ ( 𝑧 / ( ( 𝑄𝑧 ) ↑ 2 ) ) , ( 𝑄𝑧 ) ⟩ ↔ 𝑦 = 𝑧 ) ) )
187 157 186 dom2d ( 𝜑 → ( ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin → 𝑀 ≼ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) )
188 40 187 mpi ( 𝜑𝑀 ≼ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) )
189 hashdom ( ( 𝑀 ∈ Fin ∧ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin ) → ( ( ♯ ‘ 𝑀 ) ≤ ( ♯ ‘ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ↔ 𝑀 ≼ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) )
190 9 40 189 mp2an ( ( ♯ ‘ 𝑀 ) ≤ ( ♯ ‘ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ↔ 𝑀 ≼ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) )
191 188 190 sylibr ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ♯ ‘ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) )
192 hashxp ( ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ∈ Fin ∧ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ Fin ) → ( ♯ ‘ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) · ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) )
193 31 38 192 mp2an ( ♯ ‘ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) · ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) )
194 hashfz1 ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ⌊ ‘ ( √ ‘ 𝑁 ) ) )
195 23 194 syl ( 𝜑 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ⌊ ‘ ( √ ‘ 𝑁 ) ) )
196 195 oveq2d ( 𝜑 → ( ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) · ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) )
197 193 196 syl5eq ( 𝜑 → ( ♯ ‘ ( { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) )
198 191 197 breqtrd ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) )
199 34 a1i ( 𝜑 → ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) ∈ ℝ )
200 23 nn0ge0d ( 𝜑 → 0 ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) )
201 1 2 3 4 5 prmreclem2 ( 𝜑 → ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) ≤ ( 2 ↑ 𝐾 ) )
202 199 26 35 200 201 lemul1ad ( 𝜑 → ( ( ♯ ‘ { 𝑥𝑀 ∣ ( 𝑄𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ≤ ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) )
203 13 37 25 198 202 letrd ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) )
204 17 nnrpd ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℝ+ )
205 204 rprege0d ( 𝜑 → ( ( 2 ↑ 𝐾 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝐾 ) ) )
206 fllelt ( ( √ ‘ 𝑁 ) ∈ ℝ → ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) ∧ ( √ ‘ 𝑁 ) < ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) + 1 ) ) )
207 27 206 syl ( 𝜑 → ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) ∧ ( √ ‘ 𝑁 ) < ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) + 1 ) ) )
208 207 simpld ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) )
209 lemul2a ( ( ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ∧ ( √ ‘ 𝑁 ) ∈ ℝ ∧ ( ( 2 ↑ 𝐾 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝐾 ) ) ) ∧ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) ) → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ≤ ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) )
210 35 27 205 208 209 syl31anc ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ≤ ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) )
211 13 25 28 203 210 letrd ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) )