| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmrec.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 1 / 𝑛 ) , 0 ) ) |
| 2 |
|
prmrec.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 3 |
|
prmrec.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
prmrec.4 |
⊢ 𝑀 = { 𝑛 ∈ ( 1 ... 𝑁 ) ∣ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑛 } |
| 5 |
|
prmreclem2.5 |
⊢ 𝑄 = ( 𝑛 ∈ ℕ ↦ sup ( { 𝑟 ∈ ℕ ∣ ( 𝑟 ↑ 2 ) ∥ 𝑛 } , ℝ , < ) ) |
| 6 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
| 7 |
4
|
ssrab3 |
⊢ 𝑀 ⊆ ( 1 ... 𝑁 ) |
| 8 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝑀 ⊆ ( 1 ... 𝑁 ) ) → 𝑀 ∈ Fin ) |
| 9 |
6 7 8
|
mp2an |
⊢ 𝑀 ∈ Fin |
| 10 |
|
hashcl |
⊢ ( 𝑀 ∈ Fin → ( ♯ ‘ 𝑀 ) ∈ ℕ0 ) |
| 11 |
9 10
|
ax-mp |
⊢ ( ♯ ‘ 𝑀 ) ∈ ℕ0 |
| 12 |
11
|
nn0rei |
⊢ ( ♯ ‘ 𝑀 ) ∈ ℝ |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ∈ ℝ ) |
| 14 |
|
2nn |
⊢ 2 ∈ ℕ |
| 15 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 16 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 2 ↑ 𝐾 ) ∈ ℕ ) |
| 17 |
14 15 16
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℕ ) |
| 18 |
17
|
nnnn0d |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℕ0 ) |
| 19 |
3
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
| 20 |
19
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℝ+ ) |
| 21 |
20
|
rprege0d |
⊢ ( 𝜑 → ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) ) |
| 22 |
|
flge0nn0 |
⊢ ( ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℕ0 ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℕ0 ) |
| 24 |
18 23
|
nn0mulcld |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℕ0 ) |
| 25 |
24
|
nn0red |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ ) |
| 26 |
17
|
nnred |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℝ ) |
| 27 |
20
|
rpred |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℝ ) |
| 28 |
26 27
|
remulcld |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
| 29 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ⊆ 𝑀 |
| 30 |
|
ssfi |
⊢ ( ( 𝑀 ∈ Fin ∧ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ⊆ 𝑀 ) → { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ∈ Fin ) |
| 31 |
9 29 30
|
mp2an |
⊢ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ∈ Fin |
| 32 |
|
hashcl |
⊢ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ∈ ℕ0 ) |
| 33 |
31 32
|
ax-mp |
⊢ ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ∈ ℕ0 |
| 34 |
33
|
nn0rei |
⊢ ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ∈ ℝ |
| 35 |
23
|
nn0red |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
| 36 |
|
remulcl |
⊢ ( ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ∈ ℝ ∧ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ) → ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ ) |
| 37 |
34 35 36
|
sylancr |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ ) |
| 38 |
|
fzfi |
⊢ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ Fin |
| 39 |
|
xpfi |
⊢ ( ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ∈ Fin ∧ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ Fin ) → ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin ) |
| 40 |
31 38 39
|
mp2an |
⊢ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin |
| 41 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) → ( ( 𝑄 ‘ 𝑥 ) = 1 ↔ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 ) ) |
| 42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ 𝑀 ) |
| 43 |
7 42
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ( 1 ... 𝑁 ) ) |
| 44 |
|
elfznn |
⊢ ( 𝑦 ∈ ( 1 ... 𝑁 ) → 𝑦 ∈ ℕ ) |
| 45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ℕ ) |
| 46 |
5
|
prmreclem1 |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑄 ‘ 𝑦 ) ∈ ℕ ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( 𝑛 ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 47 |
46
|
simp2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ) |
| 48 |
45 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ) |
| 49 |
46
|
simp1d |
⊢ ( 𝑦 ∈ ℕ → ( 𝑄 ‘ 𝑦 ) ∈ ℕ ) |
| 50 |
45 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ∈ ℕ ) |
| 51 |
50
|
nnsqcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℕ ) |
| 52 |
51
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℤ ) |
| 53 |
51
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≠ 0 ) |
| 54 |
45
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ℤ ) |
| 55 |
|
dvdsval2 |
⊢ ( ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℤ ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≠ 0 ∧ 𝑦 ∈ ℤ ) → ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ↔ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ) ) |
| 56 |
52 53 54 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ↔ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ) ) |
| 57 |
48 56
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ) |
| 58 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
| 59 |
|
nngt0 |
⊢ ( 𝑦 ∈ ℕ → 0 < 𝑦 ) |
| 60 |
58 59
|
jca |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) |
| 61 |
|
nnre |
⊢ ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℕ → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℝ ) |
| 62 |
|
nngt0 |
⊢ ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℕ → 0 < ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) |
| 63 |
61 62
|
jca |
⊢ ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℕ → ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℝ ∧ 0 < ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 64 |
|
divgt0 |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ∧ ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℝ ∧ 0 < ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) → 0 < ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 65 |
60 63 64
|
syl2an |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℕ ) → 0 < ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 66 |
45 51 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 0 < ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 67 |
|
elnnz |
⊢ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℕ ↔ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ 0 < ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 68 |
57 66 67
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℕ ) |
| 69 |
68
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℝ ) |
| 70 |
45
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ℝ ) |
| 71 |
3
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑁 ∈ ℝ ) |
| 73 |
|
dvdsmul1 |
⊢ ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℤ ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 74 |
57 52 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 75 |
45
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ℂ ) |
| 76 |
51
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℂ ) |
| 77 |
75 76 53
|
divcan1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = 𝑦 ) |
| 78 |
74 77
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 ) |
| 79 |
|
dvdsle |
⊢ ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑦 ) ) |
| 80 |
57 45 79
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑦 ) ) |
| 81 |
78 80
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑦 ) |
| 82 |
|
elfzle2 |
⊢ ( 𝑦 ∈ ( 1 ... 𝑁 ) → 𝑦 ≤ 𝑁 ) |
| 83 |
43 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ≤ 𝑁 ) |
| 84 |
69 70 72 81 83
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑁 ) |
| 85 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 86 |
68 85
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 87 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 89 |
|
elfz5 |
⊢ ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑁 ) ) |
| 90 |
86 88 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ≤ 𝑁 ) ) |
| 91 |
84 90
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) ) |
| 92 |
|
breq2 |
⊢ ( 𝑛 = 𝑦 → ( 𝑝 ∥ 𝑛 ↔ 𝑝 ∥ 𝑦 ) ) |
| 93 |
92
|
notbid |
⊢ ( 𝑛 = 𝑦 → ( ¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑝 ∥ 𝑦 ) ) |
| 94 |
93
|
ralbidv |
⊢ ( 𝑛 = 𝑦 → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑛 ↔ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑦 ) ) |
| 95 |
94 4
|
elrab2 |
⊢ ( 𝑦 ∈ 𝑀 ↔ ( 𝑦 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑦 ) ) |
| 96 |
42 95
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑦 ) ) |
| 97 |
96
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑦 ) |
| 98 |
78
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 ) |
| 99 |
|
eldifi |
⊢ ( 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) → 𝑝 ∈ ℙ ) |
| 100 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 101 |
99 100
|
syl |
⊢ ( 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) → 𝑝 ∈ ℤ ) |
| 102 |
101
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → 𝑝 ∈ ℤ ) |
| 103 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ) |
| 104 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → 𝑦 ∈ ℤ ) |
| 105 |
|
dvdstr |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∧ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 ) → 𝑝 ∥ 𝑦 ) ) |
| 106 |
102 103 104 105
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( ( 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∧ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∥ 𝑦 ) → 𝑝 ∥ 𝑦 ) ) |
| 107 |
98 106
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) → 𝑝 ∥ 𝑦 ) ) |
| 108 |
107
|
con3d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) ∧ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ) → ( ¬ 𝑝 ∥ 𝑦 → ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 109 |
108
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑦 → ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 110 |
97 109
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 111 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) → ( 𝑝 ∥ 𝑛 ↔ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 112 |
111
|
notbid |
⊢ ( 𝑛 = ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) → ( ¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 113 |
112
|
ralbidv |
⊢ ( 𝑛 = ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ 𝑛 ↔ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 114 |
113 4
|
elrab2 |
⊢ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ 𝑀 ↔ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ( 1 ... 𝑁 ) ∧ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝐾 ) ) ¬ 𝑝 ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 115 |
91 110 114
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ 𝑀 ) |
| 116 |
5
|
prmreclem1 |
⊢ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℕ → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ℕ ∧ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∧ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( 𝐴 ↑ 2 ) ∥ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) / ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ) ) ) ) |
| 117 |
116
|
simp2d |
⊢ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℕ → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 118 |
68 117
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 119 |
116
|
simp1d |
⊢ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ ℕ → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ℕ ) |
| 120 |
68 119
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ℕ ) |
| 121 |
|
elnn1uz2 |
⊢ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ℕ ↔ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 ∨ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 122 |
120 121
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 ∨ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 123 |
122
|
ord |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ¬ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 124 |
5
|
prmreclem1 |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑄 ‘ 𝑦 ) ∈ ℕ ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 ∧ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ≥ ‘ 2 ) → ¬ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 125 |
124
|
simp3d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ∈ ( ℤ≥ ‘ 2 ) → ¬ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 126 |
45 123 125
|
sylsyld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ¬ ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 → ¬ ( ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ↑ 2 ) ∥ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 127 |
118 126
|
mt4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ) = 1 ) |
| 128 |
41 115 127
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) |
| 129 |
51
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℝ ) |
| 130 |
|
dvdsle |
⊢ ( ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ 𝑦 ) ) |
| 131 |
52 45 130
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ∥ 𝑦 → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ 𝑦 ) ) |
| 132 |
48 131
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ 𝑦 ) |
| 133 |
129 70 72 132 83
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ 𝑁 ) |
| 134 |
72
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 𝑁 ∈ ℂ ) |
| 135 |
134
|
sqsqrtd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( √ ‘ 𝑁 ) ↑ 2 ) = 𝑁 ) |
| 136 |
133 135
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) ) |
| 137 |
50
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ∈ ℝ+ ) |
| 138 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( √ ‘ 𝑁 ) ∈ ℝ+ ) |
| 139 |
|
rprege0 |
⊢ ( ( 𝑄 ‘ 𝑦 ) ∈ ℝ+ → ( ( 𝑄 ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑄 ‘ 𝑦 ) ) ) |
| 140 |
|
rprege0 |
⊢ ( ( √ ‘ 𝑁 ) ∈ ℝ+ → ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) ) |
| 141 |
|
le2sq |
⊢ ( ( ( ( 𝑄 ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑄 ‘ 𝑦 ) ) ∧ ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑁 ) ) ) → ( ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) ) ) |
| 142 |
139 140 141
|
syl2an |
⊢ ( ( ( 𝑄 ‘ 𝑦 ) ∈ ℝ+ ∧ ( √ ‘ 𝑁 ) ∈ ℝ+ ) → ( ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) ) ) |
| 143 |
137 138 142
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑁 ) ↑ 2 ) ) ) |
| 144 |
136 143
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ) |
| 145 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( √ ‘ 𝑁 ) ∈ ℝ ) |
| 146 |
50
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ∈ ℤ ) |
| 147 |
|
flge |
⊢ ( ( ( √ ‘ 𝑁 ) ∈ ℝ ∧ ( 𝑄 ‘ 𝑦 ) ∈ ℤ ) → ( ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( 𝑄 ‘ 𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 148 |
145 146 147
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ≤ ( √ ‘ 𝑁 ) ↔ ( 𝑄 ‘ 𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 149 |
144 148
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) |
| 150 |
50 85
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 151 |
23
|
nn0zd |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℤ ) |
| 152 |
151
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℤ ) |
| 153 |
|
elfz5 |
⊢ ( ( ( 𝑄 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℤ ) → ( ( 𝑄 ‘ 𝑦 ) ∈ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ↔ ( 𝑄 ‘ 𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 154 |
150 152 153
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( ( 𝑄 ‘ 𝑦 ) ∈ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ↔ ( 𝑄 ‘ 𝑦 ) ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 155 |
149 154
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑄 ‘ 𝑦 ) ∈ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 156 |
128 155
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑀 ) → 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 ∈ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
| 157 |
156
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑀 → 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 ∈ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
| 158 |
|
ovex |
⊢ ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) ∈ V |
| 159 |
|
fvex |
⊢ ( 𝑄 ‘ 𝑦 ) ∈ V |
| 160 |
158 159
|
opth |
⊢ ( 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 ↔ ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ∧ ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ 𝑧 ) ) ) |
| 161 |
|
oveq1 |
⊢ ( ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ 𝑧 ) → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) = ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) |
| 162 |
|
oveq12 |
⊢ ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ∧ ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) = ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ) |
| 163 |
161 162
|
sylan2 |
⊢ ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ∧ ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ 𝑧 ) ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ) |
| 164 |
160 163
|
sylbi |
⊢ ( 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ) |
| 165 |
77
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = 𝑦 ) |
| 166 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 167 |
7 166
|
sstri |
⊢ 𝑀 ⊆ ℕ |
| 168 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → 𝑧 ∈ 𝑀 ) |
| 169 |
167 168
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → 𝑧 ∈ ℕ ) |
| 170 |
169
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → 𝑧 ∈ ℂ ) |
| 171 |
5
|
prmreclem1 |
⊢ ( 𝑧 ∈ ℕ → ( ( 𝑄 ‘ 𝑧 ) ∈ ℕ ∧ ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ∥ 𝑧 ∧ ( 2 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( 2 ↑ 2 ) ∥ ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ) ) ) |
| 172 |
171
|
simp1d |
⊢ ( 𝑧 ∈ ℕ → ( 𝑄 ‘ 𝑧 ) ∈ ℕ ) |
| 173 |
169 172
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( 𝑄 ‘ 𝑧 ) ∈ ℕ ) |
| 174 |
173
|
nnsqcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ∈ ℕ ) |
| 175 |
174
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ∈ ℂ ) |
| 176 |
174
|
nnne0d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ≠ 0 ) |
| 177 |
170 175 176
|
divcan1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) = 𝑧 ) |
| 178 |
165 177
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( ( ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) · ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ↔ 𝑦 = 𝑧 ) ) |
| 179 |
164 178
|
imbitrid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 → 𝑦 = 𝑧 ) ) |
| 180 |
|
id |
⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
| 181 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ 𝑧 ) ) |
| 182 |
181
|
oveq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) = ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) |
| 183 |
180 182
|
oveq12d |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) = ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) ) |
| 184 |
183 181
|
opeq12d |
⊢ ( 𝑦 = 𝑧 → 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 ) |
| 185 |
179 184
|
impbid1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) ) → ( 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 ↔ 𝑦 = 𝑧 ) ) |
| 186 |
185
|
ex |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑀 ) → ( 〈 ( 𝑦 / ( ( 𝑄 ‘ 𝑦 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑦 ) 〉 = 〈 ( 𝑧 / ( ( 𝑄 ‘ 𝑧 ) ↑ 2 ) ) , ( 𝑄 ‘ 𝑧 ) 〉 ↔ 𝑦 = 𝑧 ) ) ) |
| 187 |
157 186
|
dom2d |
⊢ ( 𝜑 → ( ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin → 𝑀 ≼ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
| 188 |
40 187
|
mpi |
⊢ ( 𝜑 → 𝑀 ≼ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
| 189 |
|
hashdom |
⊢ ( ( 𝑀 ∈ Fin ∧ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ∈ Fin ) → ( ( ♯ ‘ 𝑀 ) ≤ ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ↔ 𝑀 ≼ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
| 190 |
9 40 189
|
mp2an |
⊢ ( ( ♯ ‘ 𝑀 ) ≤ ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ↔ 𝑀 ≼ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
| 191 |
188 190
|
sylibr |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
| 192 |
|
hashxp |
⊢ ( ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ∈ Fin ∧ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ∈ Fin ) → ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
| 193 |
31 38 192
|
mp2an |
⊢ ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
| 194 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) |
| 195 |
23 194
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) |
| 196 |
195
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 197 |
193 196
|
eqtrid |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } × ( 1 ... ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 198 |
191 197
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 199 |
34
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ∈ ℝ ) |
| 200 |
23
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) |
| 201 |
1 2 3 4 5
|
prmreclem2 |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) ≤ ( 2 ↑ 𝐾 ) ) |
| 202 |
199 26 35 200 201
|
lemul1ad |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ 𝑀 ∣ ( 𝑄 ‘ 𝑥 ) = 1 } ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ≤ ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 203 |
13 37 25 198 202
|
letrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 204 |
17
|
nnrpd |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℝ+ ) |
| 205 |
204
|
rprege0d |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐾 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝐾 ) ) ) |
| 206 |
|
fllelt |
⊢ ( ( √ ‘ 𝑁 ) ∈ ℝ → ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) ∧ ( √ ‘ 𝑁 ) < ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) + 1 ) ) ) |
| 207 |
27 206
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) ∧ ( √ ‘ 𝑁 ) < ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) + 1 ) ) ) |
| 208 |
207
|
simpld |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) ) |
| 209 |
|
lemul2a |
⊢ ( ( ( ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ∧ ( √ ‘ 𝑁 ) ∈ ℝ ∧ ( ( 2 ↑ 𝐾 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝐾 ) ) ) ∧ ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ≤ ( √ ‘ 𝑁 ) ) → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ≤ ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ) |
| 210 |
35 27 205 208 209
|
syl31anc |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐾 ) · ( ⌊ ‘ ( √ ‘ 𝑁 ) ) ) ≤ ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ) |
| 211 |
13 25 28 203 210
|
letrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ≤ ( ( 2 ↑ 𝐾 ) · ( √ ‘ 𝑁 ) ) ) |