| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dirkeritg.d |
|- D = ( n e. NN |-> ( x e. RR |-> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) ) ) |
| 2 |
|
dirkeritg.n |
|- ( ph -> N e. NN ) |
| 3 |
|
dirkeritg.f |
|- F = ( D ` N ) |
| 4 |
|
dirkeritg.a |
|- ( ph -> A e. RR ) |
| 5 |
|
dirkeritg.b |
|- ( ph -> B e. RR ) |
| 6 |
|
dirkeritg.aleb |
|- ( ph -> A <_ B ) |
| 7 |
|
dirkeritg.g |
|- G = ( x e. ( A [,] B ) |-> ( ( ( x / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. x ) ) / k ) ) / _pi ) ) |
| 8 |
|
fveq2 |
|- ( x = s -> ( F ` x ) = ( F ` s ) ) |
| 9 |
8
|
cbvitgv |
|- S. ( A (,) B ) ( F ` x ) _d x = S. ( A (,) B ) ( F ` s ) _d s |
| 10 |
9
|
a1i |
|- ( ph -> S. ( A (,) B ) ( F ` x ) _d x = S. ( A (,) B ) ( F ` s ) _d s ) |
| 11 |
|
elioore |
|- ( s e. ( A (,) B ) -> s e. RR ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. RR ) |
| 13 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 14 |
13
|
a1i |
|- ( s e. RR -> ( 1 / 2 ) e. RR ) |
| 15 |
|
fzfid |
|- ( s e. RR -> ( 1 ... N ) e. Fin ) |
| 16 |
|
elfzelz |
|- ( k e. ( 1 ... N ) -> k e. ZZ ) |
| 17 |
16
|
zred |
|- ( k e. ( 1 ... N ) -> k e. RR ) |
| 18 |
17
|
adantl |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> k e. RR ) |
| 19 |
|
simpl |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> s e. RR ) |
| 20 |
18 19
|
remulcld |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> ( k x. s ) e. RR ) |
| 21 |
20
|
recoscld |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> ( cos ` ( k x. s ) ) e. RR ) |
| 22 |
15 21
|
fsumrecl |
|- ( s e. RR -> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) e. RR ) |
| 23 |
14 22
|
readdcld |
|- ( s e. RR -> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. RR ) |
| 24 |
|
pire |
|- _pi e. RR |
| 25 |
24
|
a1i |
|- ( s e. RR -> _pi e. RR ) |
| 26 |
|
pipos |
|- 0 < _pi |
| 27 |
24 26
|
gt0ne0ii |
|- _pi =/= 0 |
| 28 |
27
|
a1i |
|- ( s e. RR -> _pi =/= 0 ) |
| 29 |
23 25 28
|
redivcld |
|- ( s e. RR -> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) e. RR ) |
| 30 |
12 29
|
syl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) e. RR ) |
| 31 |
|
eqid |
|- ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) = ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) |
| 32 |
31
|
fvmpt2 |
|- ( ( s e. RR /\ ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) e. RR ) -> ( ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ` s ) = ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) |
| 33 |
12 30 32
|
syl2anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ` s ) = ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) |
| 34 |
|
oveq1 |
|- ( x = s -> ( x mod ( 2 x. _pi ) ) = ( s mod ( 2 x. _pi ) ) ) |
| 35 |
34
|
eqeq1d |
|- ( x = s -> ( ( x mod ( 2 x. _pi ) ) = 0 <-> ( s mod ( 2 x. _pi ) ) = 0 ) ) |
| 36 |
|
oveq2 |
|- ( x = s -> ( ( n + ( 1 / 2 ) ) x. x ) = ( ( n + ( 1 / 2 ) ) x. s ) ) |
| 37 |
36
|
fveq2d |
|- ( x = s -> ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) = ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) |
| 38 |
|
oveq1 |
|- ( x = s -> ( x / 2 ) = ( s / 2 ) ) |
| 39 |
38
|
fveq2d |
|- ( x = s -> ( sin ` ( x / 2 ) ) = ( sin ` ( s / 2 ) ) ) |
| 40 |
39
|
oveq2d |
|- ( x = s -> ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) |
| 41 |
37 40
|
oveq12d |
|- ( x = s -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) |
| 42 |
35 41
|
ifbieq2d |
|- ( x = s -> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) = if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 43 |
42
|
cbvmptv |
|- ( x e. RR |-> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) ) = ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 44 |
43
|
mpteq2i |
|- ( n e. NN |-> ( x e. RR |-> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) ) ) = ( n e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
| 45 |
1 44
|
eqtri |
|- D = ( n e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
| 46 |
45 2 3 31
|
dirkertrigeq |
|- ( ph -> F = ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ) |
| 47 |
46
|
fveq1d |
|- ( ph -> ( F ` s ) = ( ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ` s ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` s ) = ( ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ` s ) ) |
| 49 |
|
oveq2 |
|- ( x = s -> ( k x. x ) = ( k x. s ) ) |
| 50 |
49
|
fveq2d |
|- ( x = s -> ( sin ` ( k x. x ) ) = ( sin ` ( k x. s ) ) ) |
| 51 |
50
|
oveq1d |
|- ( x = s -> ( ( sin ` ( k x. x ) ) / k ) = ( ( sin ` ( k x. s ) ) / k ) ) |
| 52 |
51
|
sumeq2sdv |
|- ( x = s -> sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. x ) ) / k ) = sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) |
| 53 |
38 52
|
oveq12d |
|- ( x = s -> ( ( x / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. x ) ) / k ) ) = ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) ) |
| 54 |
53
|
oveq1d |
|- ( x = s -> ( ( ( x / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. x ) ) / k ) ) / _pi ) = ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) |
| 55 |
54
|
cbvmptv |
|- ( x e. ( A [,] B ) |-> ( ( ( x / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. x ) ) / k ) ) / _pi ) ) = ( s e. ( A [,] B ) |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) |
| 56 |
7 55
|
eqtri |
|- G = ( s e. ( A [,] B ) |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) |
| 57 |
56
|
oveq2i |
|- ( RR _D G ) = ( RR _D ( s e. ( A [,] B ) |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) ) |
| 58 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 59 |
58
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 60 |
|
recn |
|- ( s e. RR -> s e. CC ) |
| 61 |
60
|
halfcld |
|- ( s e. RR -> ( s / 2 ) e. CC ) |
| 62 |
16
|
zcnd |
|- ( k e. ( 1 ... N ) -> k e. CC ) |
| 63 |
62
|
adantl |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> k e. CC ) |
| 64 |
60
|
adantr |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> s e. CC ) |
| 65 |
63 64
|
mulcld |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> ( k x. s ) e. CC ) |
| 66 |
65
|
sincld |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> ( sin ` ( k x. s ) ) e. CC ) |
| 67 |
|
0red |
|- ( k e. ( 1 ... N ) -> 0 e. RR ) |
| 68 |
|
1red |
|- ( k e. ( 1 ... N ) -> 1 e. RR ) |
| 69 |
|
0lt1 |
|- 0 < 1 |
| 70 |
69
|
a1i |
|- ( k e. ( 1 ... N ) -> 0 < 1 ) |
| 71 |
|
elfzle1 |
|- ( k e. ( 1 ... N ) -> 1 <_ k ) |
| 72 |
67 68 17 70 71
|
ltletrd |
|- ( k e. ( 1 ... N ) -> 0 < k ) |
| 73 |
72
|
gt0ne0d |
|- ( k e. ( 1 ... N ) -> k =/= 0 ) |
| 74 |
73
|
adantl |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> k =/= 0 ) |
| 75 |
66 63 74
|
divcld |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> ( ( sin ` ( k x. s ) ) / k ) e. CC ) |
| 76 |
15 75
|
fsumcl |
|- ( s e. RR -> sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) e. CC ) |
| 77 |
61 76
|
addcld |
|- ( s e. RR -> ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) e. CC ) |
| 78 |
|
picn |
|- _pi e. CC |
| 79 |
78
|
a1i |
|- ( s e. RR -> _pi e. CC ) |
| 80 |
77 79 28
|
divcld |
|- ( s e. RR -> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) e. CC ) |
| 81 |
80
|
adantl |
|- ( ( ph /\ s e. RR ) -> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) e. CC ) |
| 82 |
29
|
adantl |
|- ( ( ph /\ s e. RR ) -> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) e. RR ) |
| 83 |
77
|
adantl |
|- ( ( ph /\ s e. RR ) -> ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) e. CC ) |
| 84 |
23
|
adantl |
|- ( ( ph /\ s e. RR ) -> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. RR ) |
| 85 |
61
|
adantl |
|- ( ( ph /\ s e. RR ) -> ( s / 2 ) e. CC ) |
| 86 |
13
|
a1i |
|- ( ( ph /\ s e. RR ) -> ( 1 / 2 ) e. RR ) |
| 87 |
60
|
adantl |
|- ( ( ph /\ s e. RR ) -> s e. CC ) |
| 88 |
|
1red |
|- ( ( ph /\ s e. RR ) -> 1 e. RR ) |
| 89 |
59
|
dvmptid |
|- ( ph -> ( RR _D ( s e. RR |-> s ) ) = ( s e. RR |-> 1 ) ) |
| 90 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 91 |
|
2ne0 |
|- 2 =/= 0 |
| 92 |
91
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 93 |
59 87 88 89 90 92
|
dvmptdivc |
|- ( ph -> ( RR _D ( s e. RR |-> ( s / 2 ) ) ) = ( s e. RR |-> ( 1 / 2 ) ) ) |
| 94 |
76
|
adantl |
|- ( ( ph /\ s e. RR ) -> sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) e. CC ) |
| 95 |
22
|
adantl |
|- ( ( ph /\ s e. RR ) -> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) e. RR ) |
| 96 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 97 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 98 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
| 99 |
98
|
a1i |
|- ( ph -> RR e. ( topGen ` ran (,) ) ) |
| 100 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 101 |
75
|
ancoms |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( ( sin ` ( k x. s ) ) / k ) e. CC ) |
| 102 |
101
|
3adant1 |
|- ( ( ph /\ k e. ( 1 ... N ) /\ s e. RR ) -> ( ( sin ` ( k x. s ) ) / k ) e. CC ) |
| 103 |
21
|
ancoms |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( cos ` ( k x. s ) ) e. RR ) |
| 104 |
103
|
recnd |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( cos ` ( k x. s ) ) e. CC ) |
| 105 |
104
|
3adant1 |
|- ( ( ph /\ k e. ( 1 ... N ) /\ s e. RR ) -> ( cos ` ( k x. s ) ) e. CC ) |
| 106 |
58
|
a1i |
|- ( k e. ( 1 ... N ) -> RR e. { RR , CC } ) |
| 107 |
66
|
ancoms |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( sin ` ( k x. s ) ) e. CC ) |
| 108 |
62
|
adantr |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> k e. CC ) |
| 109 |
|
simpr |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> s e. CC ) |
| 110 |
108 109
|
mulcld |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> ( k x. s ) e. CC ) |
| 111 |
110
|
coscld |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> ( cos ` ( k x. s ) ) e. CC ) |
| 112 |
108 111
|
mulcld |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> ( k x. ( cos ` ( k x. s ) ) ) e. CC ) |
| 113 |
60 112
|
sylan2 |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( k x. ( cos ` ( k x. s ) ) ) e. CC ) |
| 114 |
|
ax-resscn |
|- RR C_ CC |
| 115 |
|
resmpt |
|- ( RR C_ CC -> ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) = ( s e. RR |-> ( sin ` ( k x. s ) ) ) ) |
| 116 |
114 115
|
mp1i |
|- ( k e. ( 1 ... N ) -> ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) = ( s e. RR |-> ( sin ` ( k x. s ) ) ) ) |
| 117 |
116
|
eqcomd |
|- ( k e. ( 1 ... N ) -> ( s e. RR |-> ( sin ` ( k x. s ) ) ) = ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) ) |
| 118 |
117
|
oveq2d |
|- ( k e. ( 1 ... N ) -> ( RR _D ( s e. RR |-> ( sin ` ( k x. s ) ) ) ) = ( RR _D ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) ) ) |
| 119 |
110
|
sincld |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> ( sin ` ( k x. s ) ) e. CC ) |
| 120 |
119
|
fmpttd |
|- ( k e. ( 1 ... N ) -> ( s e. CC |-> ( sin ` ( k x. s ) ) ) : CC --> CC ) |
| 121 |
112
|
ralrimiva |
|- ( k e. ( 1 ... N ) -> A. s e. CC ( k x. ( cos ` ( k x. s ) ) ) e. CC ) |
| 122 |
|
dmmptg |
|- ( A. s e. CC ( k x. ( cos ` ( k x. s ) ) ) e. CC -> dom ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) = CC ) |
| 123 |
121 122
|
syl |
|- ( k e. ( 1 ... N ) -> dom ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) = CC ) |
| 124 |
114 123
|
sseqtrrid |
|- ( k e. ( 1 ... N ) -> RR C_ dom ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
| 125 |
|
dvsinax |
|- ( k e. CC -> ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) = ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
| 126 |
62 125
|
syl |
|- ( k e. ( 1 ... N ) -> ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) = ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
| 127 |
126
|
dmeqd |
|- ( k e. ( 1 ... N ) -> dom ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) = dom ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
| 128 |
124 127
|
sseqtrrd |
|- ( k e. ( 1 ... N ) -> RR C_ dom ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) ) |
| 129 |
|
dvcnre |
|- ( ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) : CC --> CC /\ RR C_ dom ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) ) -> ( RR _D ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) ) = ( ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) |` RR ) ) |
| 130 |
120 128 129
|
syl2anc |
|- ( k e. ( 1 ... N ) -> ( RR _D ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) ) = ( ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) |` RR ) ) |
| 131 |
126
|
reseq1d |
|- ( k e. ( 1 ... N ) -> ( ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) |` RR ) = ( ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) |` RR ) ) |
| 132 |
|
resmpt |
|- ( RR C_ CC -> ( ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) |` RR ) = ( s e. RR |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
| 133 |
114 132
|
ax-mp |
|- ( ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) |` RR ) = ( s e. RR |-> ( k x. ( cos ` ( k x. s ) ) ) ) |
| 134 |
131 133
|
eqtrdi |
|- ( k e. ( 1 ... N ) -> ( ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) |` RR ) = ( s e. RR |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
| 135 |
118 130 134
|
3eqtrd |
|- ( k e. ( 1 ... N ) -> ( RR _D ( s e. RR |-> ( sin ` ( k x. s ) ) ) ) = ( s e. RR |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
| 136 |
106 107 113 135 62 73
|
dvmptdivc |
|- ( k e. ( 1 ... N ) -> ( RR _D ( s e. RR |-> ( ( sin ` ( k x. s ) ) / k ) ) ) = ( s e. RR |-> ( ( k x. ( cos ` ( k x. s ) ) ) / k ) ) ) |
| 137 |
62
|
adantr |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> k e. CC ) |
| 138 |
73
|
adantr |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> k =/= 0 ) |
| 139 |
104 137 138
|
divcan3d |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( ( k x. ( cos ` ( k x. s ) ) ) / k ) = ( cos ` ( k x. s ) ) ) |
| 140 |
139
|
mpteq2dva |
|- ( k e. ( 1 ... N ) -> ( s e. RR |-> ( ( k x. ( cos ` ( k x. s ) ) ) / k ) ) = ( s e. RR |-> ( cos ` ( k x. s ) ) ) ) |
| 141 |
136 140
|
eqtrd |
|- ( k e. ( 1 ... N ) -> ( RR _D ( s e. RR |-> ( ( sin ` ( k x. s ) ) / k ) ) ) = ( s e. RR |-> ( cos ` ( k x. s ) ) ) ) |
| 142 |
141
|
adantl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( RR _D ( s e. RR |-> ( ( sin ` ( k x. s ) ) / k ) ) ) = ( s e. RR |-> ( cos ` ( k x. s ) ) ) ) |
| 143 |
96 97 59 99 100 102 105 142
|
dvmptfsum |
|- ( ph -> ( RR _D ( s e. RR |-> sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) ) = ( s e. RR |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) ) |
| 144 |
59 85 86 93 94 95 143
|
dvmptadd |
|- ( ph -> ( RR _D ( s e. RR |-> ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) ) ) = ( s e. RR |-> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) ) ) |
| 145 |
78
|
a1i |
|- ( ph -> _pi e. CC ) |
| 146 |
27
|
a1i |
|- ( ph -> _pi =/= 0 ) |
| 147 |
59 83 84 144 145 146
|
dvmptdivc |
|- ( ph -> ( RR _D ( s e. RR |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) ) = ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ) |
| 148 |
4 5
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 149 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 150 |
4 5 149
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 151 |
59 81 82 147 148 96 97 150
|
dvmptres2 |
|- ( ph -> ( RR _D ( s e. ( A [,] B ) |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) ) = ( s e. ( A (,) B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ) |
| 152 |
57 151
|
eqtrid |
|- ( ph -> ( RR _D G ) = ( s e. ( A (,) B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ) |
| 153 |
152 30
|
fvmpt2d |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( RR _D G ) ` s ) = ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) |
| 154 |
33 48 153
|
3eqtr4d |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` s ) = ( ( RR _D G ) ` s ) ) |
| 155 |
154
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( F ` s ) _d s = S. ( A (,) B ) ( ( RR _D G ) ` s ) _d s ) |
| 156 |
|
ioosscn |
|- ( A (,) B ) C_ CC |
| 157 |
156
|
a1i |
|- ( ph -> ( A (,) B ) C_ CC ) |
| 158 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 159 |
158
|
a1i |
|- ( ph -> ( 1 / 2 ) e. CC ) |
| 160 |
|
ssid |
|- CC C_ CC |
| 161 |
160
|
a1i |
|- ( ph -> CC C_ CC ) |
| 162 |
157 159 161
|
constcncfg |
|- ( ph -> ( s e. ( A (,) B ) |-> ( 1 / 2 ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 163 |
|
eqid |
|- ( s e. CC |-> ( cos ` ( k x. s ) ) ) = ( s e. CC |-> ( cos ` ( k x. s ) ) ) |
| 164 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
| 165 |
164
|
a1i |
|- ( k e. ( 1 ... N ) -> cos e. ( CC -cn-> CC ) ) |
| 166 |
|
eqid |
|- ( s e. CC |-> ( k x. s ) ) = ( s e. CC |-> ( k x. s ) ) |
| 167 |
166
|
mulc1cncf |
|- ( k e. CC -> ( s e. CC |-> ( k x. s ) ) e. ( CC -cn-> CC ) ) |
| 168 |
62 167
|
syl |
|- ( k e. ( 1 ... N ) -> ( s e. CC |-> ( k x. s ) ) e. ( CC -cn-> CC ) ) |
| 169 |
165 168
|
cncfmpt1f |
|- ( k e. ( 1 ... N ) -> ( s e. CC |-> ( cos ` ( k x. s ) ) ) e. ( CC -cn-> CC ) ) |
| 170 |
156
|
a1i |
|- ( k e. ( 1 ... N ) -> ( A (,) B ) C_ CC ) |
| 171 |
160
|
a1i |
|- ( k e. ( 1 ... N ) -> CC C_ CC ) |
| 172 |
11 104
|
sylan2 |
|- ( ( k e. ( 1 ... N ) /\ s e. ( A (,) B ) ) -> ( cos ` ( k x. s ) ) e. CC ) |
| 173 |
163 169 170 171 172
|
cncfmptssg |
|- ( k e. ( 1 ... N ) -> ( s e. ( A (,) B ) |-> ( cos ` ( k x. s ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 174 |
173
|
adantl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. ( A (,) B ) |-> ( cos ` ( k x. s ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 175 |
157 100 174
|
fsumcncf |
|- ( ph -> ( s e. ( A (,) B ) |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 176 |
162 175
|
addcncf |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 177 |
|
eqid |
|- ( s e. CC |-> _pi ) = ( s e. CC |-> _pi ) |
| 178 |
|
cncfmptc |
|- ( ( _pi e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( s e. CC |-> _pi ) e. ( CC -cn-> CC ) ) |
| 179 |
78 160 160 178
|
mp3an |
|- ( s e. CC |-> _pi ) e. ( CC -cn-> CC ) |
| 180 |
179
|
a1i |
|- ( ph -> ( s e. CC |-> _pi ) e. ( CC -cn-> CC ) ) |
| 181 |
|
difssd |
|- ( ph -> ( CC \ { 0 } ) C_ CC ) |
| 182 |
|
eldifsn |
|- ( _pi e. ( CC \ { 0 } ) <-> ( _pi e. CC /\ _pi =/= 0 ) ) |
| 183 |
78 27 182
|
mpbir2an |
|- _pi e. ( CC \ { 0 } ) |
| 184 |
183
|
a1i |
|- ( ( ph /\ s e. ( A (,) B ) ) -> _pi e. ( CC \ { 0 } ) ) |
| 185 |
177 180 157 181 184
|
cncfmptssg |
|- ( ph -> ( s e. ( A (,) B ) |-> _pi ) e. ( ( A (,) B ) -cn-> ( CC \ { 0 } ) ) ) |
| 186 |
176 185
|
divcncf |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 187 |
152 186
|
eqeltrd |
|- ( ph -> ( RR _D G ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 188 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 189 |
188
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 190 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
| 191 |
190
|
a1i |
|- ( ph -> ( A (,) B ) e. dom vol ) |
| 192 |
13
|
a1i |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( 1 / 2 ) e. RR ) |
| 193 |
|
fzfid |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( 1 ... N ) e. Fin ) |
| 194 |
17
|
adantl |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ k e. ( 1 ... N ) ) -> k e. RR ) |
| 195 |
148
|
sselda |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s e. RR ) |
| 196 |
195
|
adantr |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ k e. ( 1 ... N ) ) -> s e. RR ) |
| 197 |
194 196
|
remulcld |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ k e. ( 1 ... N ) ) -> ( k x. s ) e. RR ) |
| 198 |
197
|
recoscld |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ k e. ( 1 ... N ) ) -> ( cos ` ( k x. s ) ) e. RR ) |
| 199 |
193 198
|
fsumrecl |
|- ( ( ph /\ s e. ( A [,] B ) ) -> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) e. RR ) |
| 200 |
192 199
|
readdcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. RR ) |
| 201 |
24
|
a1i |
|- ( ( ph /\ s e. ( A [,] B ) ) -> _pi e. RR ) |
| 202 |
27
|
a1i |
|- ( ( ph /\ s e. ( A [,] B ) ) -> _pi =/= 0 ) |
| 203 |
200 201 202
|
redivcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) e. RR ) |
| 204 |
148 114
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
| 205 |
204 159 161
|
constcncfg |
|- ( ph -> ( s e. ( A [,] B ) |-> ( 1 / 2 ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 206 |
|
eqid |
|- ( s e. CC |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) = ( s e. CC |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) |
| 207 |
169
|
adantl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. CC |-> ( cos ` ( k x. s ) ) ) e. ( CC -cn-> CC ) ) |
| 208 |
161 100 207
|
fsumcncf |
|- ( ph -> ( s e. CC |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. ( CC -cn-> CC ) ) |
| 209 |
199
|
recnd |
|- ( ( ph /\ s e. ( A [,] B ) ) -> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) e. CC ) |
| 210 |
206 208 204 161 209
|
cncfmptssg |
|- ( ph -> ( s e. ( A [,] B ) |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 211 |
205 210
|
addcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 212 |
183
|
a1i |
|- ( ph -> _pi e. ( CC \ { 0 } ) ) |
| 213 |
204 212 181
|
constcncfg |
|- ( ph -> ( s e. ( A [,] B ) |-> _pi ) e. ( ( A [,] B ) -cn-> ( CC \ { 0 } ) ) ) |
| 214 |
211 213
|
divcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 215 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( s e. ( A [,] B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( s e. ( A [,] B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. L^1 ) |
| 216 |
4 5 214 215
|
syl3anc |
|- ( ph -> ( s e. ( A [,] B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. L^1 ) |
| 217 |
189 191 203 216
|
iblss |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. L^1 ) |
| 218 |
152 217
|
eqeltrd |
|- ( ph -> ( RR _D G ) e. L^1 ) |
| 219 |
204 161
|
idcncfg |
|- ( ph -> ( s e. ( A [,] B ) |-> s ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 220 |
|
2cn |
|- 2 e. CC |
| 221 |
|
eldifsn |
|- ( 2 e. ( CC \ { 0 } ) <-> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 222 |
220 91 221
|
mpbir2an |
|- 2 e. ( CC \ { 0 } ) |
| 223 |
222
|
a1i |
|- ( ph -> 2 e. ( CC \ { 0 } ) ) |
| 224 |
204 223 181
|
constcncfg |
|- ( ph -> ( s e. ( A [,] B ) |-> 2 ) e. ( ( A [,] B ) -cn-> ( CC \ { 0 } ) ) ) |
| 225 |
219 224
|
divcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> ( s / 2 ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 226 |
|
eqid |
|- ( s e. CC |-> ( sin ` ( k x. s ) ) ) = ( s e. CC |-> ( sin ` ( k x. s ) ) ) |
| 227 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
| 228 |
227
|
a1i |
|- ( k e. ( 1 ... N ) -> sin e. ( CC -cn-> CC ) ) |
| 229 |
228 168
|
cncfmpt1f |
|- ( k e. ( 1 ... N ) -> ( s e. CC |-> ( sin ` ( k x. s ) ) ) e. ( CC -cn-> CC ) ) |
| 230 |
229
|
adantl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. CC |-> ( sin ` ( k x. s ) ) ) e. ( CC -cn-> CC ) ) |
| 231 |
204
|
adantr |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( A [,] B ) C_ CC ) |
| 232 |
160
|
a1i |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> CC C_ CC ) |
| 233 |
62
|
ad2antlr |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ s e. ( A [,] B ) ) -> k e. CC ) |
| 234 |
195
|
recnd |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s e. CC ) |
| 235 |
234
|
adantlr |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ s e. ( A [,] B ) ) -> s e. CC ) |
| 236 |
233 235
|
mulcld |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ s e. ( A [,] B ) ) -> ( k x. s ) e. CC ) |
| 237 |
236
|
sincld |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ s e. ( A [,] B ) ) -> ( sin ` ( k x. s ) ) e. CC ) |
| 238 |
226 230 231 232 237
|
cncfmptssg |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. ( A [,] B ) |-> ( sin ` ( k x. s ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 239 |
|
eldifsn |
|- ( k e. ( CC \ { 0 } ) <-> ( k e. CC /\ k =/= 0 ) ) |
| 240 |
62 73 239
|
sylanbrc |
|- ( k e. ( 1 ... N ) -> k e. ( CC \ { 0 } ) ) |
| 241 |
240
|
adantl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> k e. ( CC \ { 0 } ) ) |
| 242 |
|
difssd |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( CC \ { 0 } ) C_ CC ) |
| 243 |
231 241 242
|
constcncfg |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. ( A [,] B ) |-> k ) e. ( ( A [,] B ) -cn-> ( CC \ { 0 } ) ) ) |
| 244 |
238 243
|
divcncf |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. ( A [,] B ) |-> ( ( sin ` ( k x. s ) ) / k ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 245 |
204 100 244
|
fsumcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 246 |
225 245
|
addcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 247 |
246 213
|
divcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 248 |
56 247
|
eqeltrid |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 249 |
4 5 6 187 218 248
|
ftc2 |
|- ( ph -> S. ( A (,) B ) ( ( RR _D G ) ` s ) _d s = ( ( G ` B ) - ( G ` A ) ) ) |
| 250 |
10 155 249
|
3eqtrd |
|- ( ph -> S. ( A (,) B ) ( F ` x ) _d x = ( ( G ` B ) - ( G ` A ) ) ) |