Step |
Hyp |
Ref |
Expression |
1 |
|
dirkeritg.d |
|- D = ( n e. NN |-> ( x e. RR |-> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) ) ) |
2 |
|
dirkeritg.n |
|- ( ph -> N e. NN ) |
3 |
|
dirkeritg.f |
|- F = ( D ` N ) |
4 |
|
dirkeritg.a |
|- ( ph -> A e. RR ) |
5 |
|
dirkeritg.b |
|- ( ph -> B e. RR ) |
6 |
|
dirkeritg.aleb |
|- ( ph -> A <_ B ) |
7 |
|
dirkeritg.g |
|- G = ( x e. ( A [,] B ) |-> ( ( ( x / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. x ) ) / k ) ) / _pi ) ) |
8 |
|
fveq2 |
|- ( x = s -> ( F ` x ) = ( F ` s ) ) |
9 |
8
|
cbvitgv |
|- S. ( A (,) B ) ( F ` x ) _d x = S. ( A (,) B ) ( F ` s ) _d s |
10 |
9
|
a1i |
|- ( ph -> S. ( A (,) B ) ( F ` x ) _d x = S. ( A (,) B ) ( F ` s ) _d s ) |
11 |
|
elioore |
|- ( s e. ( A (,) B ) -> s e. RR ) |
12 |
11
|
adantl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. RR ) |
13 |
|
halfre |
|- ( 1 / 2 ) e. RR |
14 |
13
|
a1i |
|- ( s e. RR -> ( 1 / 2 ) e. RR ) |
15 |
|
fzfid |
|- ( s e. RR -> ( 1 ... N ) e. Fin ) |
16 |
|
elfzelz |
|- ( k e. ( 1 ... N ) -> k e. ZZ ) |
17 |
16
|
zred |
|- ( k e. ( 1 ... N ) -> k e. RR ) |
18 |
17
|
adantl |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> k e. RR ) |
19 |
|
simpl |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> s e. RR ) |
20 |
18 19
|
remulcld |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> ( k x. s ) e. RR ) |
21 |
20
|
recoscld |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> ( cos ` ( k x. s ) ) e. RR ) |
22 |
15 21
|
fsumrecl |
|- ( s e. RR -> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) e. RR ) |
23 |
14 22
|
readdcld |
|- ( s e. RR -> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. RR ) |
24 |
|
pire |
|- _pi e. RR |
25 |
24
|
a1i |
|- ( s e. RR -> _pi e. RR ) |
26 |
|
pipos |
|- 0 < _pi |
27 |
24 26
|
gt0ne0ii |
|- _pi =/= 0 |
28 |
27
|
a1i |
|- ( s e. RR -> _pi =/= 0 ) |
29 |
23 25 28
|
redivcld |
|- ( s e. RR -> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) e. RR ) |
30 |
12 29
|
syl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) e. RR ) |
31 |
|
eqid |
|- ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) = ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) |
32 |
31
|
fvmpt2 |
|- ( ( s e. RR /\ ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) e. RR ) -> ( ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ` s ) = ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) |
33 |
12 30 32
|
syl2anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ` s ) = ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) |
34 |
|
oveq1 |
|- ( x = s -> ( x mod ( 2 x. _pi ) ) = ( s mod ( 2 x. _pi ) ) ) |
35 |
34
|
eqeq1d |
|- ( x = s -> ( ( x mod ( 2 x. _pi ) ) = 0 <-> ( s mod ( 2 x. _pi ) ) = 0 ) ) |
36 |
|
oveq2 |
|- ( x = s -> ( ( n + ( 1 / 2 ) ) x. x ) = ( ( n + ( 1 / 2 ) ) x. s ) ) |
37 |
36
|
fveq2d |
|- ( x = s -> ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) = ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) |
38 |
|
oveq1 |
|- ( x = s -> ( x / 2 ) = ( s / 2 ) ) |
39 |
38
|
fveq2d |
|- ( x = s -> ( sin ` ( x / 2 ) ) = ( sin ` ( s / 2 ) ) ) |
40 |
39
|
oveq2d |
|- ( x = s -> ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) |
41 |
37 40
|
oveq12d |
|- ( x = s -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) |
42 |
35 41
|
ifbieq2d |
|- ( x = s -> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) = if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) |
43 |
42
|
cbvmptv |
|- ( x e. RR |-> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) ) = ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) |
44 |
43
|
mpteq2i |
|- ( n e. NN |-> ( x e. RR |-> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) ) ) = ( n e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
45 |
1 44
|
eqtri |
|- D = ( n e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
46 |
45 2 3 31
|
dirkertrigeq |
|- ( ph -> F = ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ) |
47 |
46
|
fveq1d |
|- ( ph -> ( F ` s ) = ( ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ` s ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` s ) = ( ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ` s ) ) |
49 |
|
oveq2 |
|- ( x = s -> ( k x. x ) = ( k x. s ) ) |
50 |
49
|
fveq2d |
|- ( x = s -> ( sin ` ( k x. x ) ) = ( sin ` ( k x. s ) ) ) |
51 |
50
|
oveq1d |
|- ( x = s -> ( ( sin ` ( k x. x ) ) / k ) = ( ( sin ` ( k x. s ) ) / k ) ) |
52 |
51
|
sumeq2sdv |
|- ( x = s -> sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. x ) ) / k ) = sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) |
53 |
38 52
|
oveq12d |
|- ( x = s -> ( ( x / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. x ) ) / k ) ) = ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) ) |
54 |
53
|
oveq1d |
|- ( x = s -> ( ( ( x / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. x ) ) / k ) ) / _pi ) = ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) |
55 |
54
|
cbvmptv |
|- ( x e. ( A [,] B ) |-> ( ( ( x / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. x ) ) / k ) ) / _pi ) ) = ( s e. ( A [,] B ) |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) |
56 |
7 55
|
eqtri |
|- G = ( s e. ( A [,] B ) |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) |
57 |
56
|
oveq2i |
|- ( RR _D G ) = ( RR _D ( s e. ( A [,] B ) |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) ) |
58 |
|
reelprrecn |
|- RR e. { RR , CC } |
59 |
58
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
60 |
|
recn |
|- ( s e. RR -> s e. CC ) |
61 |
60
|
halfcld |
|- ( s e. RR -> ( s / 2 ) e. CC ) |
62 |
16
|
zcnd |
|- ( k e. ( 1 ... N ) -> k e. CC ) |
63 |
62
|
adantl |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> k e. CC ) |
64 |
60
|
adantr |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> s e. CC ) |
65 |
63 64
|
mulcld |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> ( k x. s ) e. CC ) |
66 |
65
|
sincld |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> ( sin ` ( k x. s ) ) e. CC ) |
67 |
|
0red |
|- ( k e. ( 1 ... N ) -> 0 e. RR ) |
68 |
|
1red |
|- ( k e. ( 1 ... N ) -> 1 e. RR ) |
69 |
|
0lt1 |
|- 0 < 1 |
70 |
69
|
a1i |
|- ( k e. ( 1 ... N ) -> 0 < 1 ) |
71 |
|
elfzle1 |
|- ( k e. ( 1 ... N ) -> 1 <_ k ) |
72 |
67 68 17 70 71
|
ltletrd |
|- ( k e. ( 1 ... N ) -> 0 < k ) |
73 |
72
|
gt0ne0d |
|- ( k e. ( 1 ... N ) -> k =/= 0 ) |
74 |
73
|
adantl |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> k =/= 0 ) |
75 |
66 63 74
|
divcld |
|- ( ( s e. RR /\ k e. ( 1 ... N ) ) -> ( ( sin ` ( k x. s ) ) / k ) e. CC ) |
76 |
15 75
|
fsumcl |
|- ( s e. RR -> sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) e. CC ) |
77 |
61 76
|
addcld |
|- ( s e. RR -> ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) e. CC ) |
78 |
|
picn |
|- _pi e. CC |
79 |
78
|
a1i |
|- ( s e. RR -> _pi e. CC ) |
80 |
77 79 28
|
divcld |
|- ( s e. RR -> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) e. CC ) |
81 |
80
|
adantl |
|- ( ( ph /\ s e. RR ) -> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) e. CC ) |
82 |
29
|
adantl |
|- ( ( ph /\ s e. RR ) -> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) e. RR ) |
83 |
77
|
adantl |
|- ( ( ph /\ s e. RR ) -> ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) e. CC ) |
84 |
23
|
adantl |
|- ( ( ph /\ s e. RR ) -> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. RR ) |
85 |
61
|
adantl |
|- ( ( ph /\ s e. RR ) -> ( s / 2 ) e. CC ) |
86 |
13
|
a1i |
|- ( ( ph /\ s e. RR ) -> ( 1 / 2 ) e. RR ) |
87 |
60
|
adantl |
|- ( ( ph /\ s e. RR ) -> s e. CC ) |
88 |
|
1red |
|- ( ( ph /\ s e. RR ) -> 1 e. RR ) |
89 |
59
|
dvmptid |
|- ( ph -> ( RR _D ( s e. RR |-> s ) ) = ( s e. RR |-> 1 ) ) |
90 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
91 |
|
2ne0 |
|- 2 =/= 0 |
92 |
91
|
a1i |
|- ( ph -> 2 =/= 0 ) |
93 |
59 87 88 89 90 92
|
dvmptdivc |
|- ( ph -> ( RR _D ( s e. RR |-> ( s / 2 ) ) ) = ( s e. RR |-> ( 1 / 2 ) ) ) |
94 |
76
|
adantl |
|- ( ( ph /\ s e. RR ) -> sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) e. CC ) |
95 |
22
|
adantl |
|- ( ( ph /\ s e. RR ) -> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) e. RR ) |
96 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
97 |
96
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
98 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
99 |
98
|
a1i |
|- ( ph -> RR e. ( topGen ` ran (,) ) ) |
100 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
101 |
75
|
ancoms |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( ( sin ` ( k x. s ) ) / k ) e. CC ) |
102 |
101
|
3adant1 |
|- ( ( ph /\ k e. ( 1 ... N ) /\ s e. RR ) -> ( ( sin ` ( k x. s ) ) / k ) e. CC ) |
103 |
21
|
ancoms |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( cos ` ( k x. s ) ) e. RR ) |
104 |
103
|
recnd |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( cos ` ( k x. s ) ) e. CC ) |
105 |
104
|
3adant1 |
|- ( ( ph /\ k e. ( 1 ... N ) /\ s e. RR ) -> ( cos ` ( k x. s ) ) e. CC ) |
106 |
58
|
a1i |
|- ( k e. ( 1 ... N ) -> RR e. { RR , CC } ) |
107 |
66
|
ancoms |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( sin ` ( k x. s ) ) e. CC ) |
108 |
62
|
adantr |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> k e. CC ) |
109 |
|
simpr |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> s e. CC ) |
110 |
108 109
|
mulcld |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> ( k x. s ) e. CC ) |
111 |
110
|
coscld |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> ( cos ` ( k x. s ) ) e. CC ) |
112 |
108 111
|
mulcld |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> ( k x. ( cos ` ( k x. s ) ) ) e. CC ) |
113 |
60 112
|
sylan2 |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( k x. ( cos ` ( k x. s ) ) ) e. CC ) |
114 |
|
ax-resscn |
|- RR C_ CC |
115 |
|
resmpt |
|- ( RR C_ CC -> ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) = ( s e. RR |-> ( sin ` ( k x. s ) ) ) ) |
116 |
114 115
|
mp1i |
|- ( k e. ( 1 ... N ) -> ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) = ( s e. RR |-> ( sin ` ( k x. s ) ) ) ) |
117 |
116
|
eqcomd |
|- ( k e. ( 1 ... N ) -> ( s e. RR |-> ( sin ` ( k x. s ) ) ) = ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) ) |
118 |
117
|
oveq2d |
|- ( k e. ( 1 ... N ) -> ( RR _D ( s e. RR |-> ( sin ` ( k x. s ) ) ) ) = ( RR _D ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) ) ) |
119 |
110
|
sincld |
|- ( ( k e. ( 1 ... N ) /\ s e. CC ) -> ( sin ` ( k x. s ) ) e. CC ) |
120 |
119
|
fmpttd |
|- ( k e. ( 1 ... N ) -> ( s e. CC |-> ( sin ` ( k x. s ) ) ) : CC --> CC ) |
121 |
112
|
ralrimiva |
|- ( k e. ( 1 ... N ) -> A. s e. CC ( k x. ( cos ` ( k x. s ) ) ) e. CC ) |
122 |
|
dmmptg |
|- ( A. s e. CC ( k x. ( cos ` ( k x. s ) ) ) e. CC -> dom ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) = CC ) |
123 |
121 122
|
syl |
|- ( k e. ( 1 ... N ) -> dom ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) = CC ) |
124 |
114 123
|
sseqtrrid |
|- ( k e. ( 1 ... N ) -> RR C_ dom ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
125 |
|
dvsinax |
|- ( k e. CC -> ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) = ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
126 |
62 125
|
syl |
|- ( k e. ( 1 ... N ) -> ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) = ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
127 |
126
|
dmeqd |
|- ( k e. ( 1 ... N ) -> dom ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) = dom ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
128 |
124 127
|
sseqtrrd |
|- ( k e. ( 1 ... N ) -> RR C_ dom ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) ) |
129 |
|
dvcnre |
|- ( ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) : CC --> CC /\ RR C_ dom ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) ) -> ( RR _D ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) ) = ( ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) |` RR ) ) |
130 |
120 128 129
|
syl2anc |
|- ( k e. ( 1 ... N ) -> ( RR _D ( ( s e. CC |-> ( sin ` ( k x. s ) ) ) |` RR ) ) = ( ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) |` RR ) ) |
131 |
126
|
reseq1d |
|- ( k e. ( 1 ... N ) -> ( ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) |` RR ) = ( ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) |` RR ) ) |
132 |
|
resmpt |
|- ( RR C_ CC -> ( ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) |` RR ) = ( s e. RR |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
133 |
114 132
|
ax-mp |
|- ( ( s e. CC |-> ( k x. ( cos ` ( k x. s ) ) ) ) |` RR ) = ( s e. RR |-> ( k x. ( cos ` ( k x. s ) ) ) ) |
134 |
131 133
|
eqtrdi |
|- ( k e. ( 1 ... N ) -> ( ( CC _D ( s e. CC |-> ( sin ` ( k x. s ) ) ) ) |` RR ) = ( s e. RR |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
135 |
118 130 134
|
3eqtrd |
|- ( k e. ( 1 ... N ) -> ( RR _D ( s e. RR |-> ( sin ` ( k x. s ) ) ) ) = ( s e. RR |-> ( k x. ( cos ` ( k x. s ) ) ) ) ) |
136 |
106 107 113 135 62 73
|
dvmptdivc |
|- ( k e. ( 1 ... N ) -> ( RR _D ( s e. RR |-> ( ( sin ` ( k x. s ) ) / k ) ) ) = ( s e. RR |-> ( ( k x. ( cos ` ( k x. s ) ) ) / k ) ) ) |
137 |
62
|
adantr |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> k e. CC ) |
138 |
73
|
adantr |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> k =/= 0 ) |
139 |
104 137 138
|
divcan3d |
|- ( ( k e. ( 1 ... N ) /\ s e. RR ) -> ( ( k x. ( cos ` ( k x. s ) ) ) / k ) = ( cos ` ( k x. s ) ) ) |
140 |
139
|
mpteq2dva |
|- ( k e. ( 1 ... N ) -> ( s e. RR |-> ( ( k x. ( cos ` ( k x. s ) ) ) / k ) ) = ( s e. RR |-> ( cos ` ( k x. s ) ) ) ) |
141 |
136 140
|
eqtrd |
|- ( k e. ( 1 ... N ) -> ( RR _D ( s e. RR |-> ( ( sin ` ( k x. s ) ) / k ) ) ) = ( s e. RR |-> ( cos ` ( k x. s ) ) ) ) |
142 |
141
|
adantl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( RR _D ( s e. RR |-> ( ( sin ` ( k x. s ) ) / k ) ) ) = ( s e. RR |-> ( cos ` ( k x. s ) ) ) ) |
143 |
97 96 59 99 100 102 105 142
|
dvmptfsum |
|- ( ph -> ( RR _D ( s e. RR |-> sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) ) = ( s e. RR |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) ) |
144 |
59 85 86 93 94 95 143
|
dvmptadd |
|- ( ph -> ( RR _D ( s e. RR |-> ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) ) ) = ( s e. RR |-> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) ) ) |
145 |
78
|
a1i |
|- ( ph -> _pi e. CC ) |
146 |
27
|
a1i |
|- ( ph -> _pi =/= 0 ) |
147 |
59 83 84 144 145 146
|
dvmptdivc |
|- ( ph -> ( RR _D ( s e. RR |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) ) = ( s e. RR |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ) |
148 |
4 5
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
149 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
150 |
4 5 149
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
151 |
59 81 82 147 148 97 96 150
|
dvmptres2 |
|- ( ph -> ( RR _D ( s e. ( A [,] B ) |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) ) = ( s e. ( A (,) B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ) |
152 |
57 151
|
syl5eq |
|- ( ph -> ( RR _D G ) = ( s e. ( A (,) B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) ) |
153 |
152 30
|
fvmpt2d |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( RR _D G ) ` s ) = ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) |
154 |
33 48 153
|
3eqtr4d |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` s ) = ( ( RR _D G ) ` s ) ) |
155 |
154
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( F ` s ) _d s = S. ( A (,) B ) ( ( RR _D G ) ` s ) _d s ) |
156 |
|
ioosscn |
|- ( A (,) B ) C_ CC |
157 |
156
|
a1i |
|- ( ph -> ( A (,) B ) C_ CC ) |
158 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
159 |
158
|
a1i |
|- ( ph -> ( 1 / 2 ) e. CC ) |
160 |
|
ssid |
|- CC C_ CC |
161 |
160
|
a1i |
|- ( ph -> CC C_ CC ) |
162 |
157 159 161
|
constcncfg |
|- ( ph -> ( s e. ( A (,) B ) |-> ( 1 / 2 ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
163 |
|
eqid |
|- ( s e. CC |-> ( cos ` ( k x. s ) ) ) = ( s e. CC |-> ( cos ` ( k x. s ) ) ) |
164 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
165 |
164
|
a1i |
|- ( k e. ( 1 ... N ) -> cos e. ( CC -cn-> CC ) ) |
166 |
|
eqid |
|- ( s e. CC |-> ( k x. s ) ) = ( s e. CC |-> ( k x. s ) ) |
167 |
166
|
mulc1cncf |
|- ( k e. CC -> ( s e. CC |-> ( k x. s ) ) e. ( CC -cn-> CC ) ) |
168 |
62 167
|
syl |
|- ( k e. ( 1 ... N ) -> ( s e. CC |-> ( k x. s ) ) e. ( CC -cn-> CC ) ) |
169 |
165 168
|
cncfmpt1f |
|- ( k e. ( 1 ... N ) -> ( s e. CC |-> ( cos ` ( k x. s ) ) ) e. ( CC -cn-> CC ) ) |
170 |
156
|
a1i |
|- ( k e. ( 1 ... N ) -> ( A (,) B ) C_ CC ) |
171 |
160
|
a1i |
|- ( k e. ( 1 ... N ) -> CC C_ CC ) |
172 |
11 104
|
sylan2 |
|- ( ( k e. ( 1 ... N ) /\ s e. ( A (,) B ) ) -> ( cos ` ( k x. s ) ) e. CC ) |
173 |
163 169 170 171 172
|
cncfmptssg |
|- ( k e. ( 1 ... N ) -> ( s e. ( A (,) B ) |-> ( cos ` ( k x. s ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
174 |
173
|
adantl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. ( A (,) B ) |-> ( cos ` ( k x. s ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
175 |
157 100 174
|
fsumcncf |
|- ( ph -> ( s e. ( A (,) B ) |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
176 |
162 175
|
addcncf |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
177 |
|
eqid |
|- ( s e. CC |-> _pi ) = ( s e. CC |-> _pi ) |
178 |
|
cncfmptc |
|- ( ( _pi e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( s e. CC |-> _pi ) e. ( CC -cn-> CC ) ) |
179 |
78 160 160 178
|
mp3an |
|- ( s e. CC |-> _pi ) e. ( CC -cn-> CC ) |
180 |
179
|
a1i |
|- ( ph -> ( s e. CC |-> _pi ) e. ( CC -cn-> CC ) ) |
181 |
|
difssd |
|- ( ph -> ( CC \ { 0 } ) C_ CC ) |
182 |
|
eldifsn |
|- ( _pi e. ( CC \ { 0 } ) <-> ( _pi e. CC /\ _pi =/= 0 ) ) |
183 |
78 27 182
|
mpbir2an |
|- _pi e. ( CC \ { 0 } ) |
184 |
183
|
a1i |
|- ( ( ph /\ s e. ( A (,) B ) ) -> _pi e. ( CC \ { 0 } ) ) |
185 |
177 180 157 181 184
|
cncfmptssg |
|- ( ph -> ( s e. ( A (,) B ) |-> _pi ) e. ( ( A (,) B ) -cn-> ( CC \ { 0 } ) ) ) |
186 |
176 185
|
divcncf |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
187 |
152 186
|
eqeltrd |
|- ( ph -> ( RR _D G ) e. ( ( A (,) B ) -cn-> CC ) ) |
188 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
189 |
188
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
190 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
191 |
190
|
a1i |
|- ( ph -> ( A (,) B ) e. dom vol ) |
192 |
13
|
a1i |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( 1 / 2 ) e. RR ) |
193 |
|
fzfid |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( 1 ... N ) e. Fin ) |
194 |
17
|
adantl |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ k e. ( 1 ... N ) ) -> k e. RR ) |
195 |
148
|
sselda |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s e. RR ) |
196 |
195
|
adantr |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ k e. ( 1 ... N ) ) -> s e. RR ) |
197 |
194 196
|
remulcld |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ k e. ( 1 ... N ) ) -> ( k x. s ) e. RR ) |
198 |
197
|
recoscld |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ k e. ( 1 ... N ) ) -> ( cos ` ( k x. s ) ) e. RR ) |
199 |
193 198
|
fsumrecl |
|- ( ( ph /\ s e. ( A [,] B ) ) -> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) e. RR ) |
200 |
192 199
|
readdcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. RR ) |
201 |
24
|
a1i |
|- ( ( ph /\ s e. ( A [,] B ) ) -> _pi e. RR ) |
202 |
27
|
a1i |
|- ( ( ph /\ s e. ( A [,] B ) ) -> _pi =/= 0 ) |
203 |
200 201 202
|
redivcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) e. RR ) |
204 |
148 114
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
205 |
204 159 161
|
constcncfg |
|- ( ph -> ( s e. ( A [,] B ) |-> ( 1 / 2 ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
206 |
|
eqid |
|- ( s e. CC |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) = ( s e. CC |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) |
207 |
169
|
adantl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. CC |-> ( cos ` ( k x. s ) ) ) e. ( CC -cn-> CC ) ) |
208 |
161 100 207
|
fsumcncf |
|- ( ph -> ( s e. CC |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. ( CC -cn-> CC ) ) |
209 |
199
|
recnd |
|- ( ( ph /\ s e. ( A [,] B ) ) -> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) e. CC ) |
210 |
206 208 204 161 209
|
cncfmptssg |
|- ( ph -> ( s e. ( A [,] B ) |-> sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
211 |
205 210
|
addcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
212 |
183
|
a1i |
|- ( ph -> _pi e. ( CC \ { 0 } ) ) |
213 |
204 212 181
|
constcncfg |
|- ( ph -> ( s e. ( A [,] B ) |-> _pi ) e. ( ( A [,] B ) -cn-> ( CC \ { 0 } ) ) ) |
214 |
211 213
|
divcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
215 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( s e. ( A [,] B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( s e. ( A [,] B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. L^1 ) |
216 |
4 5 214 215
|
syl3anc |
|- ( ph -> ( s e. ( A [,] B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. L^1 ) |
217 |
189 191 203 216
|
iblss |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( ( 1 / 2 ) + sum_ k e. ( 1 ... N ) ( cos ` ( k x. s ) ) ) / _pi ) ) e. L^1 ) |
218 |
152 217
|
eqeltrd |
|- ( ph -> ( RR _D G ) e. L^1 ) |
219 |
204 161
|
idcncfg |
|- ( ph -> ( s e. ( A [,] B ) |-> s ) e. ( ( A [,] B ) -cn-> CC ) ) |
220 |
|
2cn |
|- 2 e. CC |
221 |
|
eldifsn |
|- ( 2 e. ( CC \ { 0 } ) <-> ( 2 e. CC /\ 2 =/= 0 ) ) |
222 |
220 91 221
|
mpbir2an |
|- 2 e. ( CC \ { 0 } ) |
223 |
222
|
a1i |
|- ( ph -> 2 e. ( CC \ { 0 } ) ) |
224 |
204 223 181
|
constcncfg |
|- ( ph -> ( s e. ( A [,] B ) |-> 2 ) e. ( ( A [,] B ) -cn-> ( CC \ { 0 } ) ) ) |
225 |
219 224
|
divcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> ( s / 2 ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
226 |
|
eqid |
|- ( s e. CC |-> ( sin ` ( k x. s ) ) ) = ( s e. CC |-> ( sin ` ( k x. s ) ) ) |
227 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
228 |
227
|
a1i |
|- ( k e. ( 1 ... N ) -> sin e. ( CC -cn-> CC ) ) |
229 |
228 168
|
cncfmpt1f |
|- ( k e. ( 1 ... N ) -> ( s e. CC |-> ( sin ` ( k x. s ) ) ) e. ( CC -cn-> CC ) ) |
230 |
229
|
adantl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. CC |-> ( sin ` ( k x. s ) ) ) e. ( CC -cn-> CC ) ) |
231 |
204
|
adantr |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( A [,] B ) C_ CC ) |
232 |
160
|
a1i |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> CC C_ CC ) |
233 |
62
|
ad2antlr |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ s e. ( A [,] B ) ) -> k e. CC ) |
234 |
195
|
recnd |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s e. CC ) |
235 |
234
|
adantlr |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ s e. ( A [,] B ) ) -> s e. CC ) |
236 |
233 235
|
mulcld |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ s e. ( A [,] B ) ) -> ( k x. s ) e. CC ) |
237 |
236
|
sincld |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ s e. ( A [,] B ) ) -> ( sin ` ( k x. s ) ) e. CC ) |
238 |
226 230 231 232 237
|
cncfmptssg |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. ( A [,] B ) |-> ( sin ` ( k x. s ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
239 |
|
eldifsn |
|- ( k e. ( CC \ { 0 } ) <-> ( k e. CC /\ k =/= 0 ) ) |
240 |
62 73 239
|
sylanbrc |
|- ( k e. ( 1 ... N ) -> k e. ( CC \ { 0 } ) ) |
241 |
240
|
adantl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> k e. ( CC \ { 0 } ) ) |
242 |
|
difssd |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( CC \ { 0 } ) C_ CC ) |
243 |
231 241 242
|
constcncfg |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. ( A [,] B ) |-> k ) e. ( ( A [,] B ) -cn-> ( CC \ { 0 } ) ) ) |
244 |
238 243
|
divcncf |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( s e. ( A [,] B ) |-> ( ( sin ` ( k x. s ) ) / k ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
245 |
204 100 244
|
fsumcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
246 |
225 245
|
addcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
247 |
246 213
|
divcncf |
|- ( ph -> ( s e. ( A [,] B ) |-> ( ( ( s / 2 ) + sum_ k e. ( 1 ... N ) ( ( sin ` ( k x. s ) ) / k ) ) / _pi ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
248 |
56 247
|
eqeltrid |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
249 |
4 5 6 187 218 248
|
ftc2 |
|- ( ph -> S. ( A (,) B ) ( ( RR _D G ) ` s ) _d s = ( ( G ` B ) - ( G ` A ) ) ) |
250 |
10 155 249
|
3eqtrd |
|- ( ph -> S. ( A (,) B ) ( F ` x ) _d x = ( ( G ` B ) - ( G ` A ) ) ) |