Metamath Proof Explorer


Theorem ackbij2lem2

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypotheses ackbij.f F=x𝒫ωFincardyxy×𝒫y
ackbij.g G=xVy𝒫domxFxy
Assertion ackbij2lem2 AωrecGA:R1A1-1 ontocardR1A

Proof

Step Hyp Ref Expression
1 ackbij.f F=x𝒫ωFincardyxy×𝒫y
2 ackbij.g G=xVy𝒫domxFxy
3 fveq2 a=recGa=recG
4 fveq2 a=R1a=R1
5 2fveq3 a=cardR1a=cardR1
6 3 4 5 f1oeq123d a=recGa:R1a1-1 ontocardR1arecG:R11-1 ontocardR1
7 fveq2 a=brecGa=recGb
8 fveq2 a=bR1a=R1b
9 2fveq3 a=bcardR1a=cardR1b
10 7 8 9 f1oeq123d a=brecGa:R1a1-1 ontocardR1arecGb:R1b1-1 ontocardR1b
11 fveq2 a=sucbrecGa=recGsucb
12 fveq2 a=sucbR1a=R1sucb
13 2fveq3 a=sucbcardR1a=cardR1sucb
14 11 12 13 f1oeq123d a=sucbrecGa:R1a1-1 ontocardR1arecGsucb:R1sucb1-1 ontocardR1sucb
15 fveq2 a=ArecGa=recGA
16 fveq2 a=AR1a=R1A
17 2fveq3 a=AcardR1a=cardR1A
18 15 16 17 f1oeq123d a=ArecGa:R1a1-1 ontocardR1arecGA:R1A1-1 ontocardR1A
19 f1o0 :1-1 onto
20 0ex V
21 20 rdg0 recG=
22 f1oeq1 recG=recG:R11-1 ontocardR1:R11-1 ontocardR1
23 21 22 ax-mp recG:R11-1 ontocardR1:R11-1 ontocardR1
24 r10 R1=
25 24 fveq2i cardR1=card
26 card0 card=
27 25 26 eqtri cardR1=
28 f1oeq23 R1=cardR1=:R11-1 ontocardR1:1-1 onto
29 24 27 28 mp2an :R11-1 ontocardR1:1-1 onto
30 23 29 bitri recG:R11-1 ontocardR1:1-1 onto
31 19 30 mpbir recG:R11-1 ontocardR1
32 1 ackbij1lem17 F:𝒫ωFin1-1ω
33 32 a1i bωF:𝒫ωFin1-1ω
34 r1fin bωR1bFin
35 ficardom R1bFincardR1bω
36 34 35 syl bωcardR1bω
37 ackbij2lem1 cardR1bω𝒫cardR1b𝒫ωFin
38 36 37 syl bω𝒫cardR1b𝒫ωFin
39 f1ores F:𝒫ωFin1-1ω𝒫cardR1b𝒫ωFinF𝒫cardR1b:𝒫cardR1b1-1 ontoF𝒫cardR1b
40 33 38 39 syl2anc bωF𝒫cardR1b:𝒫cardR1b1-1 ontoF𝒫cardR1b
41 1 ackbij1b cardR1bωF𝒫cardR1b=card𝒫cardR1b
42 36 41 syl bωF𝒫cardR1b=card𝒫cardR1b
43 ficardid R1bFincardR1bR1b
44 pwen cardR1bR1b𝒫cardR1b𝒫R1b
45 carden2b 𝒫cardR1b𝒫R1bcard𝒫cardR1b=card𝒫R1b
46 34 43 44 45 4syl bωcard𝒫cardR1b=card𝒫R1b
47 42 46 eqtrd bωF𝒫cardR1b=card𝒫R1b
48 47 f1oeq3d bωF𝒫cardR1b:𝒫cardR1b1-1 ontoF𝒫cardR1bF𝒫cardR1b:𝒫cardR1b1-1 ontocard𝒫R1b
49 40 48 mpbid bωF𝒫cardR1b:𝒫cardR1b1-1 ontocard𝒫R1b
50 49 adantr bωrecGb:R1b1-1 ontocardR1bF𝒫cardR1b:𝒫cardR1b1-1 ontocard𝒫R1b
51 f1opw recGb:R1b1-1 ontocardR1ba𝒫R1brecGba:𝒫R1b1-1 onto𝒫cardR1b
52 51 adantl bωrecGb:R1b1-1 ontocardR1ba𝒫R1brecGba:𝒫R1b1-1 onto𝒫cardR1b
53 f1oco F𝒫cardR1b:𝒫cardR1b1-1 ontocard𝒫R1ba𝒫R1brecGba:𝒫R1b1-1 onto𝒫cardR1bF𝒫cardR1ba𝒫R1brecGba:𝒫R1b1-1 ontocard𝒫R1b
54 50 52 53 syl2anc bωrecGb:R1b1-1 ontocardR1bF𝒫cardR1ba𝒫R1brecGba:𝒫R1b1-1 ontocard𝒫R1b
55 frsuc bωrecGωsucb=GrecGωb
56 peano2 bωsucbω
57 56 fvresd bωrecGωsucb=recGsucb
58 fvres bωrecGωb=recGb
59 58 fveq2d bωGrecGωb=GrecGb
60 fvex recGbV
61 dmeq x=recGbdomx=domrecGb
62 61 pweqd x=recGb𝒫domx=𝒫domrecGb
63 imaeq1 x=recGbxy=recGby
64 63 fveq2d x=recGbFxy=FrecGby
65 62 64 mpteq12dv x=recGby𝒫domxFxy=y𝒫domrecGbFrecGby
66 60 dmex domrecGbV
67 66 pwex 𝒫domrecGbV
68 67 mptex y𝒫domrecGbFrecGbyV
69 65 2 68 fvmpt recGbVGrecGb=y𝒫domrecGbFrecGby
70 60 69 ax-mp GrecGb=y𝒫domrecGbFrecGby
71 59 70 eqtrdi bωGrecGωb=y𝒫domrecGbFrecGby
72 55 57 71 3eqtr3d bωrecGsucb=y𝒫domrecGbFrecGby
73 72 adantr bωrecGb:R1b1-1 ontocardR1brecGsucb=y𝒫domrecGbFrecGby
74 f1odm recGb:R1b1-1 ontocardR1bdomrecGb=R1b
75 74 adantl bωrecGb:R1b1-1 ontocardR1bdomrecGb=R1b
76 75 pweqd bωrecGb:R1b1-1 ontocardR1b𝒫domrecGb=𝒫R1b
77 76 mpteq1d bωrecGb:R1b1-1 ontocardR1by𝒫domrecGbFrecGby=y𝒫R1bFrecGby
78 fvex FrecGbyV
79 eqid y𝒫R1bFrecGby=y𝒫R1bFrecGby
80 78 79 fnmpti y𝒫R1bFrecGbyFn𝒫R1b
81 80 a1i bωrecGb:R1b1-1 ontocardR1by𝒫R1bFrecGbyFn𝒫R1b
82 f1ofn F𝒫cardR1ba𝒫R1brecGba:𝒫R1b1-1 ontocard𝒫R1bF𝒫cardR1ba𝒫R1brecGbaFn𝒫R1b
83 54 82 syl bωrecGb:R1b1-1 ontocardR1bF𝒫cardR1ba𝒫R1brecGbaFn𝒫R1b
84 f1of a𝒫R1brecGba:𝒫R1b1-1 onto𝒫cardR1ba𝒫R1brecGba:𝒫R1b𝒫cardR1b
85 52 84 syl bωrecGb:R1b1-1 ontocardR1ba𝒫R1brecGba:𝒫R1b𝒫cardR1b
86 85 ffvelcdmda bωrecGb:R1b1-1 ontocardR1bc𝒫R1ba𝒫R1brecGbac𝒫cardR1b
87 86 fvresd bωrecGb:R1b1-1 ontocardR1bc𝒫R1bF𝒫cardR1ba𝒫R1brecGbac=Fa𝒫R1brecGbac
88 imaeq2 a=crecGba=recGbc
89 eqid a𝒫R1brecGba=a𝒫R1brecGba
90 60 imaex recGbcV
91 88 89 90 fvmpt c𝒫R1ba𝒫R1brecGbac=recGbc
92 91 adantl bωrecGb:R1b1-1 ontocardR1bc𝒫R1ba𝒫R1brecGbac=recGbc
93 92 fveq2d bωrecGb:R1b1-1 ontocardR1bc𝒫R1bFa𝒫R1brecGbac=FrecGbc
94 87 93 eqtrd bωrecGb:R1b1-1 ontocardR1bc𝒫R1bF𝒫cardR1ba𝒫R1brecGbac=FrecGbc
95 fvco3 a𝒫R1brecGba:𝒫R1b𝒫cardR1bc𝒫R1bF𝒫cardR1ba𝒫R1brecGbac=F𝒫cardR1ba𝒫R1brecGbac
96 85 95 sylan bωrecGb:R1b1-1 ontocardR1bc𝒫R1bF𝒫cardR1ba𝒫R1brecGbac=F𝒫cardR1ba𝒫R1brecGbac
97 imaeq2 y=crecGby=recGbc
98 97 fveq2d y=cFrecGby=FrecGbc
99 fvex FrecGbcV
100 98 79 99 fvmpt c𝒫R1by𝒫R1bFrecGbyc=FrecGbc
101 100 adantl bωrecGb:R1b1-1 ontocardR1bc𝒫R1by𝒫R1bFrecGbyc=FrecGbc
102 94 96 101 3eqtr4rd bωrecGb:R1b1-1 ontocardR1bc𝒫R1by𝒫R1bFrecGbyc=F𝒫cardR1ba𝒫R1brecGbac
103 81 83 102 eqfnfvd bωrecGb:R1b1-1 ontocardR1by𝒫R1bFrecGby=F𝒫cardR1ba𝒫R1brecGba
104 77 103 eqtrd bωrecGb:R1b1-1 ontocardR1by𝒫domrecGbFrecGby=F𝒫cardR1ba𝒫R1brecGba
105 73 104 eqtrd bωrecGb:R1b1-1 ontocardR1brecGsucb=F𝒫cardR1ba𝒫R1brecGba
106 f1oeq1 recGsucb=F𝒫cardR1ba𝒫R1brecGbarecGsucb:R1sucb1-1 ontocardR1sucbF𝒫cardR1ba𝒫R1brecGba:R1sucb1-1 ontocardR1sucb
107 105 106 syl bωrecGb:R1b1-1 ontocardR1brecGsucb:R1sucb1-1 ontocardR1sucbF𝒫cardR1ba𝒫R1brecGba:R1sucb1-1 ontocardR1sucb
108 nnon bωbOn
109 r1suc bOnR1sucb=𝒫R1b
110 108 109 syl bωR1sucb=𝒫R1b
111 110 fveq2d bωcardR1sucb=card𝒫R1b
112 f1oeq23 R1sucb=𝒫R1bcardR1sucb=card𝒫R1bF𝒫cardR1ba𝒫R1brecGba:R1sucb1-1 ontocardR1sucbF𝒫cardR1ba𝒫R1brecGba:𝒫R1b1-1 ontocard𝒫R1b
113 110 111 112 syl2anc bωF𝒫cardR1ba𝒫R1brecGba:R1sucb1-1 ontocardR1sucbF𝒫cardR1ba𝒫R1brecGba:𝒫R1b1-1 ontocard𝒫R1b
114 113 adantr bωrecGb:R1b1-1 ontocardR1bF𝒫cardR1ba𝒫R1brecGba:R1sucb1-1 ontocardR1sucbF𝒫cardR1ba𝒫R1brecGba:𝒫R1b1-1 ontocard𝒫R1b
115 107 114 bitrd bωrecGb:R1b1-1 ontocardR1brecGsucb:R1sucb1-1 ontocardR1sucbF𝒫cardR1ba𝒫R1brecGba:𝒫R1b1-1 ontocard𝒫R1b
116 54 115 mpbird bωrecGb:R1b1-1 ontocardR1brecGsucb:R1sucb1-1 ontocardR1sucb
117 116 ex bωrecGb:R1b1-1 ontocardR1brecGsucb:R1sucb1-1 ontocardR1sucb
118 6 10 14 18 31 117 finds AωrecGA:R1A1-1 ontocardR1A