Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
The Ackermann bijection
ackbij2lem2
Next ⟩
ackbij2lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
ackbij2lem2
Description:
Lemma for
ackbij2
.
(Contributed by
Stefan O'Rear
, 18-Nov-2014)
Ref
Expression
Hypotheses
ackbij.f
ω
⊢
F
=
x
∈
𝒫
ω
∩
Fin
⟼
card
⋃
y
∈
x
y
×
𝒫
y
ackbij.g
⊢
G
=
x
∈
V
⟼
y
∈
𝒫
dom
x
⟼
F
x
y
Assertion
ackbij2lem2
ω
⊢
A
∈
ω
→
rec
G
∅
A
:
R
1
A
⟶
1-1 onto
card
R
1
A
Proof
Step
Hyp
Ref
Expression
1
ackbij.f
ω
⊢
F
=
x
∈
𝒫
ω
∩
Fin
⟼
card
⋃
y
∈
x
y
×
𝒫
y
2
ackbij.g
⊢
G
=
x
∈
V
⟼
y
∈
𝒫
dom
x
⟼
F
x
y
3
fveq2
⊢
a
=
∅
→
rec
G
∅
a
=
rec
G
∅
∅
4
fveq2
⊢
a
=
∅
→
R
1
a
=
R
1
∅
5
2fveq3
⊢
a
=
∅
→
card
R
1
a
=
card
R
1
∅
6
3
4
5
f1oeq123d
⊢
a
=
∅
→
rec
G
∅
a
:
R
1
a
⟶
1-1 onto
card
R
1
a
↔
rec
G
∅
∅
:
R
1
∅
⟶
1-1 onto
card
R
1
∅
7
fveq2
⊢
a
=
b
→
rec
G
∅
a
=
rec
G
∅
b
8
fveq2
⊢
a
=
b
→
R
1
a
=
R
1
b
9
2fveq3
⊢
a
=
b
→
card
R
1
a
=
card
R
1
b
10
7
8
9
f1oeq123d
⊢
a
=
b
→
rec
G
∅
a
:
R
1
a
⟶
1-1 onto
card
R
1
a
↔
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
11
fveq2
⊢
a
=
suc
b
→
rec
G
∅
a
=
rec
G
∅
suc
b
12
fveq2
⊢
a
=
suc
b
→
R
1
a
=
R
1
suc
b
13
2fveq3
⊢
a
=
suc
b
→
card
R
1
a
=
card
R
1
suc
b
14
11
12
13
f1oeq123d
⊢
a
=
suc
b
→
rec
G
∅
a
:
R
1
a
⟶
1-1 onto
card
R
1
a
↔
rec
G
∅
suc
b
:
R
1
suc
b
⟶
1-1 onto
card
R
1
suc
b
15
fveq2
⊢
a
=
A
→
rec
G
∅
a
=
rec
G
∅
A
16
fveq2
⊢
a
=
A
→
R
1
a
=
R
1
A
17
2fveq3
⊢
a
=
A
→
card
R
1
a
=
card
R
1
A
18
15
16
17
f1oeq123d
⊢
a
=
A
→
rec
G
∅
a
:
R
1
a
⟶
1-1 onto
card
R
1
a
↔
rec
G
∅
A
:
R
1
A
⟶
1-1 onto
card
R
1
A
19
f1o0
⊢
∅
:
∅
⟶
1-1 onto
∅
20
0ex
⊢
∅
∈
V
21
20
rdg0
⊢
rec
G
∅
∅
=
∅
22
f1oeq1
⊢
rec
G
∅
∅
=
∅
→
rec
G
∅
∅
:
R
1
∅
⟶
1-1 onto
card
R
1
∅
↔
∅
:
R
1
∅
⟶
1-1 onto
card
R
1
∅
23
21
22
ax-mp
⊢
rec
G
∅
∅
:
R
1
∅
⟶
1-1 onto
card
R
1
∅
↔
∅
:
R
1
∅
⟶
1-1 onto
card
R
1
∅
24
r10
⊢
R
1
∅
=
∅
25
24
fveq2i
⊢
card
R
1
∅
=
card
∅
26
card0
⊢
card
∅
=
∅
27
25
26
eqtri
⊢
card
R
1
∅
=
∅
28
f1oeq23
⊢
R
1
∅
=
∅
∧
card
R
1
∅
=
∅
→
∅
:
R
1
∅
⟶
1-1 onto
card
R
1
∅
↔
∅
:
∅
⟶
1-1 onto
∅
29
24
27
28
mp2an
⊢
∅
:
R
1
∅
⟶
1-1 onto
card
R
1
∅
↔
∅
:
∅
⟶
1-1 onto
∅
30
23
29
bitri
⊢
rec
G
∅
∅
:
R
1
∅
⟶
1-1 onto
card
R
1
∅
↔
∅
:
∅
⟶
1-1 onto
∅
31
19
30
mpbir
⊢
rec
G
∅
∅
:
R
1
∅
⟶
1-1 onto
card
R
1
∅
32
1
ackbij1lem17
ω
ω
⊢
F
:
𝒫
ω
∩
Fin
⟶
1-1
ω
33
32
a1i
ω
ω
ω
⊢
b
∈
ω
→
F
:
𝒫
ω
∩
Fin
⟶
1-1
ω
34
r1fin
ω
⊢
b
∈
ω
→
R
1
b
∈
Fin
35
ficardom
ω
⊢
R
1
b
∈
Fin
→
card
R
1
b
∈
ω
36
34
35
syl
ω
ω
⊢
b
∈
ω
→
card
R
1
b
∈
ω
37
ackbij2lem1
ω
ω
⊢
card
R
1
b
∈
ω
→
𝒫
card
R
1
b
⊆
𝒫
ω
∩
Fin
38
36
37
syl
ω
ω
⊢
b
∈
ω
→
𝒫
card
R
1
b
⊆
𝒫
ω
∩
Fin
39
f1ores
ω
ω
ω
⊢
F
:
𝒫
ω
∩
Fin
⟶
1-1
ω
∧
𝒫
card
R
1
b
⊆
𝒫
ω
∩
Fin
→
F
↾
𝒫
card
R
1
b
:
𝒫
card
R
1
b
⟶
1-1 onto
F
𝒫
card
R
1
b
40
33
38
39
syl2anc
ω
⊢
b
∈
ω
→
F
↾
𝒫
card
R
1
b
:
𝒫
card
R
1
b
⟶
1-1 onto
F
𝒫
card
R
1
b
41
1
ackbij1b
ω
⊢
card
R
1
b
∈
ω
→
F
𝒫
card
R
1
b
=
card
𝒫
card
R
1
b
42
36
41
syl
ω
⊢
b
∈
ω
→
F
𝒫
card
R
1
b
=
card
𝒫
card
R
1
b
43
ficardid
⊢
R
1
b
∈
Fin
→
card
R
1
b
≈
R
1
b
44
pwen
⊢
card
R
1
b
≈
R
1
b
→
𝒫
card
R
1
b
≈
𝒫
R
1
b
45
carden2b
⊢
𝒫
card
R
1
b
≈
𝒫
R
1
b
→
card
𝒫
card
R
1
b
=
card
𝒫
R
1
b
46
34
43
44
45
4syl
ω
⊢
b
∈
ω
→
card
𝒫
card
R
1
b
=
card
𝒫
R
1
b
47
42
46
eqtrd
ω
⊢
b
∈
ω
→
F
𝒫
card
R
1
b
=
card
𝒫
R
1
b
48
47
f1oeq3d
ω
⊢
b
∈
ω
→
F
↾
𝒫
card
R
1
b
:
𝒫
card
R
1
b
⟶
1-1 onto
F
𝒫
card
R
1
b
↔
F
↾
𝒫
card
R
1
b
:
𝒫
card
R
1
b
⟶
1-1 onto
card
𝒫
R
1
b
49
40
48
mpbid
ω
⊢
b
∈
ω
→
F
↾
𝒫
card
R
1
b
:
𝒫
card
R
1
b
⟶
1-1 onto
card
𝒫
R
1
b
50
49
adantr
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
F
↾
𝒫
card
R
1
b
:
𝒫
card
R
1
b
⟶
1-1 onto
card
𝒫
R
1
b
51
f1opw
⊢
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
1-1 onto
𝒫
card
R
1
b
52
51
adantl
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
1-1 onto
𝒫
card
R
1
b
53
f1oco
⊢
F
↾
𝒫
card
R
1
b
:
𝒫
card
R
1
b
⟶
1-1 onto
card
𝒫
R
1
b
∧
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
1-1 onto
𝒫
card
R
1
b
→
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
1-1 onto
card
𝒫
R
1
b
54
50
52
53
syl2anc
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
1-1 onto
card
𝒫
R
1
b
55
frsuc
ω
ω
ω
⊢
b
∈
ω
→
rec
G
∅
↾
ω
suc
b
=
G
rec
G
∅
↾
ω
b
56
peano2
ω
ω
⊢
b
∈
ω
→
suc
b
∈
ω
57
56
fvresd
ω
ω
⊢
b
∈
ω
→
rec
G
∅
↾
ω
suc
b
=
rec
G
∅
suc
b
58
fvres
ω
ω
⊢
b
∈
ω
→
rec
G
∅
↾
ω
b
=
rec
G
∅
b
59
58
fveq2d
ω
ω
⊢
b
∈
ω
→
G
rec
G
∅
↾
ω
b
=
G
rec
G
∅
b
60
fvex
⊢
rec
G
∅
b
∈
V
61
dmeq
⊢
x
=
rec
G
∅
b
→
dom
x
=
dom
rec
G
∅
b
62
61
pweqd
⊢
x
=
rec
G
∅
b
→
𝒫
dom
x
=
𝒫
dom
rec
G
∅
b
63
imaeq1
⊢
x
=
rec
G
∅
b
→
x
y
=
rec
G
∅
b
y
64
63
fveq2d
⊢
x
=
rec
G
∅
b
→
F
x
y
=
F
rec
G
∅
b
y
65
62
64
mpteq12dv
⊢
x
=
rec
G
∅
b
→
y
∈
𝒫
dom
x
⟼
F
x
y
=
y
∈
𝒫
dom
rec
G
∅
b
⟼
F
rec
G
∅
b
y
66
60
dmex
⊢
dom
rec
G
∅
b
∈
V
67
66
pwex
⊢
𝒫
dom
rec
G
∅
b
∈
V
68
67
mptex
⊢
y
∈
𝒫
dom
rec
G
∅
b
⟼
F
rec
G
∅
b
y
∈
V
69
65
2
68
fvmpt
⊢
rec
G
∅
b
∈
V
→
G
rec
G
∅
b
=
y
∈
𝒫
dom
rec
G
∅
b
⟼
F
rec
G
∅
b
y
70
60
69
ax-mp
⊢
G
rec
G
∅
b
=
y
∈
𝒫
dom
rec
G
∅
b
⟼
F
rec
G
∅
b
y
71
59
70
eqtrdi
ω
ω
⊢
b
∈
ω
→
G
rec
G
∅
↾
ω
b
=
y
∈
𝒫
dom
rec
G
∅
b
⟼
F
rec
G
∅
b
y
72
55
57
71
3eqtr3d
ω
⊢
b
∈
ω
→
rec
G
∅
suc
b
=
y
∈
𝒫
dom
rec
G
∅
b
⟼
F
rec
G
∅
b
y
73
72
adantr
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
rec
G
∅
suc
b
=
y
∈
𝒫
dom
rec
G
∅
b
⟼
F
rec
G
∅
b
y
74
f1odm
⊢
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
dom
rec
G
∅
b
=
R
1
b
75
74
adantl
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
dom
rec
G
∅
b
=
R
1
b
76
75
pweqd
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
𝒫
dom
rec
G
∅
b
=
𝒫
R
1
b
77
76
mpteq1d
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
y
∈
𝒫
dom
rec
G
∅
b
⟼
F
rec
G
∅
b
y
=
y
∈
𝒫
R
1
b
⟼
F
rec
G
∅
b
y
78
fvex
⊢
F
rec
G
∅
b
y
∈
V
79
eqid
⊢
y
∈
𝒫
R
1
b
⟼
F
rec
G
∅
b
y
=
y
∈
𝒫
R
1
b
⟼
F
rec
G
∅
b
y
80
78
79
fnmpti
⊢
y
∈
𝒫
R
1
b
⟼
F
rec
G
∅
b
y
Fn
𝒫
R
1
b
81
80
a1i
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
y
∈
𝒫
R
1
b
⟼
F
rec
G
∅
b
y
Fn
𝒫
R
1
b
82
f1ofn
⊢
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
1-1 onto
card
𝒫
R
1
b
→
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
Fn
𝒫
R
1
b
83
54
82
syl
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
Fn
𝒫
R
1
b
84
f1of
⊢
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
1-1 onto
𝒫
card
R
1
b
→
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
𝒫
card
R
1
b
85
52
84
syl
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
𝒫
card
R
1
b
86
85
ffvelcdmda
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
∧
c
∈
𝒫
R
1
b
→
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
∈
𝒫
card
R
1
b
87
86
fvresd
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
∧
c
∈
𝒫
R
1
b
→
F
↾
𝒫
card
R
1
b
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
=
F
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
88
imaeq2
⊢
a
=
c
→
rec
G
∅
b
a
=
rec
G
∅
b
c
89
eqid
⊢
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
=
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
90
60
imaex
⊢
rec
G
∅
b
c
∈
V
91
88
89
90
fvmpt
⊢
c
∈
𝒫
R
1
b
→
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
=
rec
G
∅
b
c
92
91
adantl
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
∧
c
∈
𝒫
R
1
b
→
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
=
rec
G
∅
b
c
93
92
fveq2d
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
∧
c
∈
𝒫
R
1
b
→
F
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
=
F
rec
G
∅
b
c
94
87
93
eqtrd
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
∧
c
∈
𝒫
R
1
b
→
F
↾
𝒫
card
R
1
b
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
=
F
rec
G
∅
b
c
95
fvco3
⊢
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
𝒫
card
R
1
b
∧
c
∈
𝒫
R
1
b
→
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
=
F
↾
𝒫
card
R
1
b
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
96
85
95
sylan
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
∧
c
∈
𝒫
R
1
b
→
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
=
F
↾
𝒫
card
R
1
b
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
97
imaeq2
⊢
y
=
c
→
rec
G
∅
b
y
=
rec
G
∅
b
c
98
97
fveq2d
⊢
y
=
c
→
F
rec
G
∅
b
y
=
F
rec
G
∅
b
c
99
fvex
⊢
F
rec
G
∅
b
c
∈
V
100
98
79
99
fvmpt
⊢
c
∈
𝒫
R
1
b
→
y
∈
𝒫
R
1
b
⟼
F
rec
G
∅
b
y
c
=
F
rec
G
∅
b
c
101
100
adantl
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
∧
c
∈
𝒫
R
1
b
→
y
∈
𝒫
R
1
b
⟼
F
rec
G
∅
b
y
c
=
F
rec
G
∅
b
c
102
94
96
101
3eqtr4rd
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
∧
c
∈
𝒫
R
1
b
→
y
∈
𝒫
R
1
b
⟼
F
rec
G
∅
b
y
c
=
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
c
103
81
83
102
eqfnfvd
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
y
∈
𝒫
R
1
b
⟼
F
rec
G
∅
b
y
=
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
104
77
103
eqtrd
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
y
∈
𝒫
dom
rec
G
∅
b
⟼
F
rec
G
∅
b
y
=
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
105
73
104
eqtrd
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
rec
G
∅
suc
b
=
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
106
f1oeq1
⊢
rec
G
∅
suc
b
=
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
→
rec
G
∅
suc
b
:
R
1
suc
b
⟶
1-1 onto
card
R
1
suc
b
↔
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
R
1
suc
b
⟶
1-1 onto
card
R
1
suc
b
107
105
106
syl
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
rec
G
∅
suc
b
:
R
1
suc
b
⟶
1-1 onto
card
R
1
suc
b
↔
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
R
1
suc
b
⟶
1-1 onto
card
R
1
suc
b
108
nnon
ω
⊢
b
∈
ω
→
b
∈
On
109
r1suc
⊢
b
∈
On
→
R
1
suc
b
=
𝒫
R
1
b
110
108
109
syl
ω
⊢
b
∈
ω
→
R
1
suc
b
=
𝒫
R
1
b
111
110
fveq2d
ω
⊢
b
∈
ω
→
card
R
1
suc
b
=
card
𝒫
R
1
b
112
f1oeq23
⊢
R
1
suc
b
=
𝒫
R
1
b
∧
card
R
1
suc
b
=
card
𝒫
R
1
b
→
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
R
1
suc
b
⟶
1-1 onto
card
R
1
suc
b
↔
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
1-1 onto
card
𝒫
R
1
b
113
110
111
112
syl2anc
ω
⊢
b
∈
ω
→
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
R
1
suc
b
⟶
1-1 onto
card
R
1
suc
b
↔
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
1-1 onto
card
𝒫
R
1
b
114
113
adantr
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
R
1
suc
b
⟶
1-1 onto
card
R
1
suc
b
↔
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
1-1 onto
card
𝒫
R
1
b
115
107
114
bitrd
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
rec
G
∅
suc
b
:
R
1
suc
b
⟶
1-1 onto
card
R
1
suc
b
↔
F
↾
𝒫
card
R
1
b
∘
a
∈
𝒫
R
1
b
⟼
rec
G
∅
b
a
:
𝒫
R
1
b
⟶
1-1 onto
card
𝒫
R
1
b
116
54
115
mpbird
ω
⊢
b
∈
ω
∧
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
rec
G
∅
suc
b
:
R
1
suc
b
⟶
1-1 onto
card
R
1
suc
b
117
116
ex
ω
⊢
b
∈
ω
→
rec
G
∅
b
:
R
1
b
⟶
1-1 onto
card
R
1
b
→
rec
G
∅
suc
b
:
R
1
suc
b
⟶
1-1 onto
card
R
1
suc
b
118
6
10
14
18
31
117
finds
ω
⊢
A
∈
ω
→
rec
G
∅
A
:
R
1
A
⟶
1-1 onto
card
R
1
A