Metamath Proof Explorer


Theorem altgsumbcALT

Description: Alternate proof of altgsumbc , using Pascal's rule ( bcpascm1 ) instead of the binomial theorem ( binom ). (Contributed by AV, 8-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion altgsumbcALT Nk=0N1k(Nk)=0

Proof

Step Hyp Ref Expression
1 elfzelz k0Nk
2 bcpascm1 Nk(N1k)+(N1k1)=(Nk)
3 1 2 sylan2 Nk0N(N1k)+(N1k1)=(Nk)
4 3 eqcomd Nk0N(Nk)=(N1k)+(N1k1)
5 4 oveq2d Nk0N1k(Nk)=1k(N1k)+(N1k1)
6 ax-1cn 1
7 negcl 11
8 elfznn0 k0Nk0
9 expcl 1k01k
10 7 8 9 syl2an 1k0N1k
11 6 10 mpan k0N1k
12 11 adantl Nk0N1k
13 nnm1nn0 NN10
14 bccl N10k(N1k)0
15 14 nn0cnd N10k(N1k)
16 13 1 15 syl2an Nk0N(N1k)
17 peano2zm kk1
18 1 17 syl k0Nk1
19 bccl N10k1(N1k1)0
20 19 nn0cnd N10k1(N1k1)
21 13 18 20 syl2an Nk0N(N1k1)
22 12 16 21 adddid Nk0N1k(N1k)+(N1k1)=1k(N1k)+1k(N1k1)
23 5 22 eqtrd Nk0N1k(Nk)=1k(N1k)+1k(N1k1)
24 23 sumeq2dv Nk=0N1k(Nk)=k=0N1k(N1k)+1k(N1k1)
25 fzfid N0NFin
26 neg1cn 1
27 26 a1i N1
28 27 8 9 syl2an Nk0N1k
29 28 16 mulcld Nk0N1k(N1k)
30 1z 1
31 30 a1i k0N1
32 1 31 zsubcld k0Nk1
33 13 32 20 syl2an Nk0N(N1k1)
34 28 33 mulcld Nk0N1k(N1k1)
35 25 29 34 fsumadd Nk=0N1k(N1k)+1k(N1k1)=k=0N1k(N1k)+k=0N1k(N1k1)
36 30 a1i N1
37 0zd N0
38 nnz NN
39 oveq2 k=j11k=1j1
40 oveq2 k=j1(N1k)=(N1j1)
41 39 40 oveq12d k=j11k(N1k)=1j1(N1j1)
42 36 37 38 29 41 fsumshft Nk=0N1k(N1k)=j=0+1N+11j1(N1j1)
43 0p1e1 0+1=1
44 43 oveq1i 0+1N+1=1N+1
45 44 a1i N0+1N+1=1N+1
46 45 sumeq1d Nj=0+1N+11j1(N1j1)=j=1N+11j1(N1j1)
47 elnnuz NN1
48 47 biimpi NN1
49 26 a1i Nj1N+11
50 elfznn j1N+1j
51 nnm1nn0 jj10
52 50 51 syl j1N+1j10
53 52 adantl Nj1N+1j10
54 49 53 expcld Nj1N+11j1
55 elfzelz j1N+1j
56 elfzel1 j1N+11
57 55 56 zsubcld j1N+1j1
58 bccl N10j1(N1j1)0
59 58 nn0cnd N10j1(N1j1)
60 13 57 59 syl2an Nj1N+1(N1j1)
61 54 60 mulcld Nj1N+11j1(N1j1)
62 oveq1 j=N+1j1=N+1-1
63 62 oveq2d j=N+11j1=1N+1-1
64 62 oveq2d j=N+1(N1j1)=(N1N+1-1)
65 63 64 oveq12d j=N+11j1(N1j1)=1N+1-1(N1N+1-1)
66 48 61 65 fsump1 Nj=1N+11j1(N1j1)=j=1N1j1(N1j1)+1N+1-1(N1N+1-1)
67 nncn NN
68 pncan1 NN+1-1=N
69 67 68 syl NN+1-1=N
70 nnnn0 NN0
71 69 70 eqeltrd NN+1-10
72 71 nn0zd NN+1-1
73 nnre NN
74 ltm1 NN1<N
75 73 74 syl NN1<N
76 75 69 breqtrrd NN1<N+1-1
77 76 olcd NN+1-1<0N1<N+1-1
78 bcval4 N10N+1-1N+1-1<0N1<N+1-1(N1N+1-1)=0
79 13 72 77 78 syl3anc N(N1N+1-1)=0
80 79 oveq2d N1N+1-1(N1N+1-1)=1N+1-10
81 27 71 expcld N1N+1-1
82 81 mul01d N1N+1-10=0
83 80 82 eqtrd N1N+1-1(N1N+1-1)=0
84 83 oveq2d Nj=1N1j1(N1j1)+1N+1-1(N1N+1-1)=j=1N1j1(N1j1)+0
85 oveq1 j=kj1=k1
86 85 oveq2d j=k1j1=1k1
87 85 oveq2d j=k(N1j1)=(N1k1)
88 86 87 oveq12d j=k1j1(N1j1)=1k1(N1k1)
89 88 cbvsumv j=1N1j1(N1j1)=k=1N1k1(N1k1)
90 89 a1i Nj=1N1j1(N1j1)=k=1N1k1(N1k1)
91 90 oveq1d Nj=1N1j1(N1j1)+0=k=1N1k1(N1k1)+0
92 fzfid N1NFin
93 26 a1i Nk1N1
94 elfznn k1Nk
95 nnm1nn0 kk10
96 94 95 syl k1Nk10
97 96 adantl Nk1Nk10
98 93 97 expcld Nk1N1k1
99 elfzelz k1Nk
100 elfzel1 k1N1
101 99 100 zsubcld k1Nk1
102 13 101 19 syl2an Nk1N(N1k1)0
103 102 nn0cnd Nk1N(N1k1)
104 98 103 mulcld Nk1N1k1(N1k1)
105 92 104 fsumcl Nk=1N1k1(N1k1)
106 105 addridd Nk=1N1k1(N1k1)+0=k=1N1k1(N1k1)
107 91 106 eqtrd Nj=1N1j1(N1j1)+0=k=1N1k1(N1k1)
108 66 84 107 3eqtrd Nj=1N+11j1(N1j1)=k=1N1k1(N1k1)
109 42 46 108 3eqtrd Nk=0N1k(N1k)=k=1N1k1(N1k1)
110 elnn0uz N0N0
111 70 110 sylib NN0
112 oveq2 k=01k=10
113 oveq1 k=0k1=01
114 113 oveq2d k=0(N1k1)=(N101)
115 112 114 oveq12d k=01k(N1k1)=10(N101)
116 111 34 115 fsum1p Nk=0N1k(N1k1)=10(N101)+k=0+1N1k(N1k1)
117 27 exp0d N10=1
118 0z 0
119 zsubcl 0101
120 118 30 119 mp2an 01
121 120 a1i N01
122 0re 0
123 ltm1 001<0
124 122 123 mp1i N01<0
125 124 orcd N01<0N1<01
126 bcval4 N100101<0N1<01(N101)=0
127 13 121 125 126 syl3anc N(N101)=0
128 117 127 oveq12d N10(N101)=10
129 6 a1i N1
130 129 mul01d N10=0
131 128 130 eqtrd N10(N101)=0
132 43 a1i N0+1=1
133 132 oveq1d N0+1N=1N
134 99 zcnd k1Nk
135 npcan1 kk-1+1=k
136 135 eqcomd kk=k-1+1
137 134 136 syl k1Nk=k-1+1
138 137 adantl Nk1Nk=k-1+1
139 138 oveq2d Nk1N1k=1k-1+1
140 expp1 1k101k-1+1=1k1-1
141 27 96 140 syl2an Nk1N1k-1+1=1k1-1
142 139 141 eqtrd Nk1N1k=1k1-1
143 142 oveq1d Nk1N1k(N1k1)=1k1-1(N1k1)
144 98 93 mulcomd Nk1N1k1-1=-11k1
145 144 oveq1d Nk1N1k1-1(N1k1)=-11k1(N1k1)
146 93 98 103 mulassd Nk1N-11k1(N1k1)=-11k1(N1k1)
147 143 145 146 3eqtrd Nk1N1k(N1k1)=-11k1(N1k1)
148 133 147 sumeq12rdv Nk=0+1N1k(N1k1)=k=1N-11k1(N1k1)
149 92 27 104 fsummulc2 N-1k=1N1k1(N1k1)=k=1N-11k1(N1k1)
150 148 149 eqtr4d Nk=0+1N1k(N1k1)=-1k=1N1k1(N1k1)
151 131 150 oveq12d N10(N101)+k=0+1N1k(N1k1)=0+-1k=1N1k1(N1k1)
152 27 105 mulcld N-1k=1N1k1(N1k1)
153 152 addlidd N0+-1k=1N1k1(N1k1)=-1k=1N1k1(N1k1)
154 116 151 153 3eqtrd Nk=0N1k(N1k1)=-1k=1N1k1(N1k1)
155 109 154 oveq12d Nk=0N1k(N1k)+k=0N1k(N1k1)=k=1N1k1(N1k1)+-1k=1N1k1(N1k1)
156 35 155 eqtrd Nk=0N1k(N1k)+1k(N1k1)=k=1N1k1(N1k1)+-1k=1N1k1(N1k1)
157 105 mulm1d N-1k=1N1k1(N1k1)=k=1N1k1(N1k1)
158 157 oveq2d Nk=1N1k1(N1k1)+-1k=1N1k1(N1k1)=k=1N1k1(N1k1)+k=1N1k1(N1k1)
159 105 negidd Nk=1N1k1(N1k1)+k=1N1k1(N1k1)=0
160 158 159 eqtrd Nk=1N1k1(N1k1)+-1k=1N1k1(N1k1)=0
161 24 156 160 3eqtrd Nk=0N1k(Nk)=0