Metamath Proof Explorer


Theorem aomclem6

Description: Lemma for dfac11 . Transfinite induction, close over z . (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses aomclem6.b B=ab|cR1domzcb¬cadR1domzdzdomzcdadb
aomclem6.c C=aVsupyaR1domzB
aomclem6.d D=recsaVCR1domzrana
aomclem6.e E=ab|D-1aD-1b
aomclem6.f F=ab|rankaErankbranka=rankbazsucrankab
aomclem6.g G=ifdomz=domzFER1domz×R1domz
aomclem6.h H=recszVG
aomclem6.a φAOn
aomclem6.y φa𝒫R1Aaya𝒫aFin
Assertion aomclem6 φHAWeR1A

Proof

Step Hyp Ref Expression
1 aomclem6.b B=ab|cR1domzcb¬cadR1domzdzdomzcdadb
2 aomclem6.c C=aVsupyaR1domzB
3 aomclem6.d D=recsaVCR1domzrana
4 aomclem6.e E=ab|D-1aD-1b
5 aomclem6.f F=ab|rankaErankbranka=rankbazsucrankab
6 aomclem6.g G=ifdomz=domzFER1domz×R1domz
7 aomclem6.h H=recszVG
8 aomclem6.a φAOn
9 aomclem6.y φa𝒫R1Aaya𝒫aFin
10 ssid AA
11 8 adantr φAAAOn
12 sseq1 c=dcAdA
13 12 anbi2d c=dφcAφdA
14 fveq2 c=dHc=Hd
15 fveq2 c=dR1c=R1d
16 14 15 weeq12d c=dHcWeR1cHdWeR1d
17 13 16 imbi12d c=dφcAHcWeR1cφdAHdWeR1d
18 sseq1 c=AcAAA
19 18 anbi2d c=AφcAφAA
20 fveq2 c=AHc=HA
21 fveq2 c=AR1c=R1A
22 20 21 weeq12d c=AHcWeR1cHAWeR1A
23 19 22 imbi12d c=AφcAHcWeR1cφAAHAWeR1A
24 dmeq z=Hcdomz=domHc
25 24 adantl cOndcφdAHdWeR1dφcAz=Hcdomz=domHc
26 simpl1 cOndcφdAHdWeR1dφcAz=HccOn
27 onss cOncOn
28 7 tfr1 HFnOn
29 fnssres HFnOncOnHcFnc
30 28 29 mpan cOnHcFnc
31 fndm HcFncdomHc=c
32 26 27 30 31 4syl cOndcφdAHdWeR1dφcAz=HcdomHc=c
33 25 32 eqtrd cOndcφdAHdWeR1dφcAz=Hcdomz=c
34 33 26 eqeltrd cOndcφdAHdWeR1dφcAz=HcdomzOn
35 33 eleq2d cOndcφdAHdWeR1dφcAz=Hcadomzac
36 35 biimpa cOndcφdAHdWeR1dφcAz=Hcadomzac
37 simpll2 cOndcφdAHdWeR1dφcAz=HcadomzdcφdAHdWeR1d
38 simpl3l cOndcφdAHdWeR1dφcAz=Hcφ
39 38 adantr cOndcφdAHdWeR1dφcAz=Hcadomzφ
40 onelss domzOnadomzadomz
41 34 40 syl cOndcφdAHdWeR1dφcAz=Hcadomzadomz
42 41 imp cOndcφdAHdWeR1dφcAz=Hcadomzadomz
43 simpl3r cOndcφdAHdWeR1dφcAz=HccA
44 33 43 eqsstrd cOndcφdAHdWeR1dφcAz=HcdomzA
45 44 adantr cOndcφdAHdWeR1dφcAz=HcadomzdomzA
46 42 45 sstrd cOndcφdAHdWeR1dφcAz=HcadomzaA
47 sseq1 d=adAaA
48 47 anbi2d d=aφdAφaA
49 fveq2 d=aHd=Ha
50 fveq2 d=aR1d=R1a
51 49 50 weeq12d d=aHdWeR1dHaWeR1a
52 48 51 imbi12d d=aφdAHdWeR1dφaAHaWeR1a
53 52 rspcva acdcφdAHdWeR1dφaAHaWeR1a
54 53 imp acdcφdAHdWeR1dφaAHaWeR1a
55 36 37 39 46 54 syl22anc cOndcφdAHdWeR1dφcAz=HcadomzHaWeR1a
56 fveq1 z=Hcza=Hca
57 56 ad2antlr cOndcφdAHdWeR1dφcAz=Hcadomzza=Hca
58 fvres acHca=Ha
59 36 58 syl cOndcφdAHdWeR1dφcAz=HcadomzHca=Ha
60 57 59 eqtrd cOndcφdAHdWeR1dφcAz=Hcadomzza=Ha
61 weeq1 za=HazaWeR1aHaWeR1a
62 60 61 syl cOndcφdAHdWeR1dφcAz=HcadomzzaWeR1aHaWeR1a
63 55 62 mpbird cOndcφdAHdWeR1dφcAz=HcadomzzaWeR1a
64 63 ralrimiva cOndcφdAHdWeR1dφcAz=HcadomzzaWeR1a
65 38 8 syl cOndcφdAHdWeR1dφcAz=HcAOn
66 38 9 syl cOndcφdAHdWeR1dφcAz=Hca𝒫R1Aaya𝒫aFin
67 1 2 3 4 5 6 34 64 65 44 66 aomclem5 cOndcφdAHdWeR1dφcAz=HcGWeR1domz
68 33 fveq2d cOndcφdAHdWeR1dφcAz=HcR1domz=R1c
69 weeq2 R1domz=R1cGWeR1domzGWeR1c
70 68 69 syl cOndcφdAHdWeR1dφcAz=HcGWeR1domzGWeR1c
71 67 70 mpbid cOndcφdAHdWeR1dφcAz=HcGWeR1c
72 71 ex cOndcφdAHdWeR1dφcAz=HcGWeR1c
73 72 alrimiv cOndcφdAHdWeR1dφcAzz=HcGWeR1c
74 nfv dz=HcGWeR1c
75 nfv zd=Hc
76 nfsbc1v z[˙d/z]˙GWeR1c
77 75 76 nfim zd=Hc[˙d/z]˙GWeR1c
78 eqeq1 z=dz=Hcd=Hc
79 sbceq1a z=dGWeR1c[˙d/z]˙GWeR1c
80 78 79 imbi12d z=dz=HcGWeR1cd=Hc[˙d/z]˙GWeR1c
81 74 77 80 cbvalv1 zz=HcGWeR1cdd=Hc[˙d/z]˙GWeR1c
82 73 81 sylib cOndcφdAHdWeR1dφcAdd=Hc[˙d/z]˙GWeR1c
83 nfsbc1v d[˙Hc/d]˙[˙d/z]˙GWeR1c
84 fnfun HFnOnFunH
85 28 84 ax-mp FunH
86 vex cV
87 resfunexg FunHcVHcV
88 85 86 87 mp2an HcV
89 sbceq1a d=Hc[˙d/z]˙GWeR1c[˙Hc/d]˙[˙d/z]˙GWeR1c
90 83 88 89 ceqsal dd=Hc[˙d/z]˙GWeR1c[˙Hc/d]˙[˙d/z]˙GWeR1c
91 82 90 sylib cOndcφdAHdWeR1dφcA[˙Hc/d]˙[˙d/z]˙GWeR1c
92 sbccow [˙Hc/d]˙[˙d/z]˙GWeR1c[˙Hc/z]˙GWeR1c
93 91 92 sylib cOndcφdAHdWeR1dφcA[˙Hc/z]˙GWeR1c
94 nfcsb1v _zHc/zG
95 nfcv _zR1c
96 94 95 nfwe zHc/zGWeR1c
97 csbeq1a z=HcG=Hc/zG
98 weeq1 G=Hc/zGGWeR1cHc/zGWeR1c
99 97 98 syl z=HcGWeR1cHc/zGWeR1c
100 96 99 sbciegf HcV[˙Hc/z]˙GWeR1cHc/zGWeR1c
101 88 100 ax-mp [˙Hc/z]˙GWeR1cHc/zGWeR1c
102 93 101 sylib cOndcφdAHdWeR1dφcAHc/zGWeR1c
103 recsval cOnrecszVGc=zVGrecszVGc
104 7 fveq1i Hc=recszVGc
105 fvex R1domzV
106 105 105 xpex R1domz×R1domzV
107 106 inex2 ifdomz=domzFER1domz×R1domzV
108 6 107 eqeltri GV
109 108 csbex Hc/zGV
110 eqid zVG=zVG
111 110 fvmpts HcVHc/zGVzVGHc=Hc/zG
112 88 109 111 mp2an zVGHc=Hc/zG
113 7 reseq1i Hc=recszVGc
114 113 fveq2i zVGHc=zVGrecszVGc
115 112 114 eqtr3i Hc/zG=zVGrecszVGc
116 103 104 115 3eqtr4g cOnHc=Hc/zG
117 weeq1 Hc=Hc/zGHcWeR1cHc/zGWeR1c
118 116 117 syl cOnHcWeR1cHc/zGWeR1c
119 118 3ad2ant1 cOndcφdAHdWeR1dφcAHcWeR1cHc/zGWeR1c
120 102 119 mpbird cOndcφdAHdWeR1dφcAHcWeR1c
121 120 3exp cOndcφdAHdWeR1dφcAHcWeR1c
122 17 23 121 tfis3 AOnφAAHAWeR1A
123 11 122 mpcom φAAHAWeR1A
124 10 123 mpan2 φHAWeR1A