Metamath Proof Explorer


Theorem bcval5

Description: Write out the top and bottom parts of the binomial coefficient ( N _C K ) = ( N x. ( N - 1 ) x. ... x. ( ( N - K ) + 1 ) ) / K ! explicitly. In this form, it is valid even for N < K , although it is no longer valid for nonpositive K . (Contributed by Mario Carneiro, 22-May-2014)

Ref Expression
Assertion bcval5 N0K(NK)=seqN-K+1×INK!

Proof

Step Hyp Ref Expression
1 bcval2 K0N(NK)=N!NK!K!
2 1 adantl N0KK0N(NK)=N!NK!K!
3 mulcl kxkx
4 3 adantl N0KK0NNKkxkx
5 mulass kxykxy=kxy
6 5 adantl N0KK0NNKkxykxy=kxy
7 simplr N0KK0NK
8 elfzuz3 K0NNK
9 8 adantl N0KK0NNK
10 eluznn KNKN
11 7 9 10 syl2anc N0KK0NN
12 11 adantrr N0KK0NNKN
13 simplr N0KK0NNKK
14 nnre NN
15 nnrp KK+
16 ltsubrp NK+NK<N
17 14 15 16 syl2an NKNK<N
18 12 13 17 syl2anc N0KK0NNKNK<N
19 12 nnzd N0KK0NNKN
20 nnz KK
21 20 ad2antlr N0KK0NNKK
22 19 21 zsubcld N0KK0NNKNK
23 zltp1le NKNNK<NN-K+1N
24 22 19 23 syl2anc N0KK0NNKNK<NN-K+1N
25 18 24 mpbid N0KK0NNKN-K+1N
26 22 peano2zd N0KK0NNKN-K+1
27 eluz N-K+1NNN-K+1N-K+1N
28 26 19 27 syl2anc N0KK0NNKNN-K+1N-K+1N
29 25 28 mpbird N0KK0NNKNN-K+1
30 simprr N0KK0NNKNK
31 nnuz =1
32 30 31 eleqtrdi N0KK0NNKNK1
33 fvi k1NIk=k
34 elfzelz k1Nk
35 34 zcnd k1Nk
36 33 35 eqeltrd k1NIk
37 36 adantl N0KK0NNKk1NIk
38 4 6 29 32 37 seqsplit N0KK0NNKseq1×IN=seq1×INKseqN-K+1×IN
39 facnn NN!=seq1×IN
40 12 39 syl N0KK0NNKN!=seq1×IN
41 facnn NKNK!=seq1×INK
42 30 41 syl N0KK0NNKNK!=seq1×INK
43 42 oveq1d N0KK0NNKNK!seqN-K+1×IN=seq1×INKseqN-K+1×IN
44 38 40 43 3eqtr4d N0KK0NNKN!=NK!seqN-K+1×IN
45 44 expr N0KK0NNKN!=NK!seqN-K+1×IN
46 simpll N0KK0NN0
47 faccl N0N!
48 nncn N!N!
49 46 47 48 3syl N0KK0NN!
50 49 mullidd N0KK0N1N!=N!
51 11 39 syl N0KK0NN!=seq1×IN
52 51 oveq2d N0KK0N1N!=1seq1×IN
53 50 52 eqtr3d N0KK0NN!=1seq1×IN
54 fveq2 NK=0NK!=0!
55 fac0 0!=1
56 54 55 eqtrdi NK=0NK!=1
57 oveq1 NK=0N-K+1=0+1
58 0p1e1 0+1=1
59 57 58 eqtrdi NK=0N-K+1=1
60 59 seqeq1d NK=0seqN-K+1×I=seq1×I
61 60 fveq1d NK=0seqN-K+1×IN=seq1×IN
62 56 61 oveq12d NK=0NK!seqN-K+1×IN=1seq1×IN
63 62 eqeq2d NK=0N!=NK!seqN-K+1×INN!=1seq1×IN
64 53 63 syl5ibrcom N0KK0NNK=0N!=NK!seqN-K+1×IN
65 fznn0sub K0NNK0
66 65 adantl N0KK0NNK0
67 elnn0 NK0NKNK=0
68 66 67 sylib N0KK0NNKNK=0
69 45 64 68 mpjaod N0KK0NN!=NK!seqN-K+1×IN
70 69 oveq1d N0KK0NN!NK!K!=NK!seqN-K+1×INNK!K!
71 eqid N-K+1=N-K+1
72 nn0z N0N
73 zsubcl NKNK
74 72 20 73 syl2an N0KNK
75 74 peano2zd N0KN-K+1
76 75 adantr N0KK0NN-K+1
77 fvi kN-K+1Ik=k
78 eluzelcn kN-K+1k
79 77 78 eqeltrd kN-K+1Ik
80 79 adantl N0KK0NkN-K+1Ik
81 3 adantl N0KK0Nkxkx
82 71 76 80 81 seqf N0KK0NseqN-K+1×I:N-K+1
83 11 7 17 syl2anc N0KK0NNK<N
84 74 adantr N0KK0NNK
85 11 nnzd N0KK0NN
86 84 85 23 syl2anc N0KK0NNK<NN-K+1N
87 83 86 mpbid N0KK0NN-K+1N
88 76 85 27 syl2anc N0KK0NNN-K+1N-K+1N
89 87 88 mpbird N0KK0NNN-K+1
90 82 89 ffvelcdmd N0KK0NseqN-K+1×IN
91 elfznn0 K0NK0
92 91 adantl N0KK0NK0
93 92 faccld N0KK0NK!
94 93 nncnd N0KK0NK!
95 66 faccld N0KK0NNK!
96 95 nncnd N0KK0NNK!
97 93 nnne0d N0KK0NK!0
98 95 nnne0d N0KK0NNK!0
99 90 94 96 97 98 divcan5d N0KK0NNK!seqN-K+1×INNK!K!=seqN-K+1×INK!
100 2 70 99 3eqtrd N0KK0N(NK)=seqN-K+1×INK!
101 nnnn0 KK0
102 101 ad2antlr N0K¬K0NK0
103 faccl K0K!
104 nncn K!K!
105 nnne0 K!K!0
106 104 105 div0d K!0K!=0
107 102 103 106 3syl N0K¬K0N0K!=0
108 3 adantl N0K¬K0Nkxkx
109 fvi kN-K+1NIk=k
110 elfzelz kN-K+1Nk
111 110 zcnd kN-K+1Nk
112 109 111 eqeltrd kN-K+1NIk
113 112 adantl N0K¬K0NkN-K+1NIk
114 mul02 k0k=0
115 114 adantl N0K¬K0Nk0k=0
116 mul01 kk0=0
117 116 adantl N0K¬K0Nkk0=0
118 75 adantr N0K¬K0NN-K+1
119 72 ad2antrr N0K¬K0NN
120 0zd N0K¬K0N0
121 simpr N0K¬K0N¬K0N
122 nn0uz 0=0
123 102 122 eleqtrdi N0K¬K0NK0
124 elfz5 K0NK0NKN
125 123 119 124 syl2anc N0K¬K0NK0NKN
126 nn0re N0N
127 126 ad2antrr N0K¬K0NN
128 nnre KK
129 128 ad2antlr N0K¬K0NK
130 127 129 subge0d N0K¬K0N0NKKN
131 125 130 bitr4d N0K¬K0NK0N0NK
132 121 131 mtbid N0K¬K0N¬0NK
133 74 adantr N0K¬K0NNK
134 133 zred N0K¬K0NNK
135 0re 0
136 ltnle NK0NK<0¬0NK
137 134 135 136 sylancl N0K¬K0NNK<0¬0NK
138 132 137 mpbird N0K¬K0NNK<0
139 0z 0
140 zltp1le NK0NK<0N-K+10
141 133 139 140 sylancl N0K¬K0NNK<0N-K+10
142 138 141 mpbid N0K¬K0NN-K+10
143 nn0ge0 N00N
144 143 ad2antrr N0K¬K0N0N
145 118 119 120 142 144 elfzd N0K¬K0N0N-K+1N
146 simpll N0K¬K0NN0
147 0cn 0
148 fvi 0I0=0
149 147 148 mp1i N0K¬K0NI0=0
150 108 113 115 117 145 146 149 seqz N0K¬K0NseqN-K+1×IN=0
151 150 oveq1d N0K¬K0NseqN-K+1×INK!=0K!
152 bcval3 N0K¬K0N(NK)=0
153 20 152 syl3an2 N0K¬K0N(NK)=0
154 153 3expa N0K¬K0N(NK)=0
155 107 151 154 3eqtr4rd N0K¬K0N(NK)=seqN-K+1×INK!
156 100 155 pm2.61dan N0K(NK)=seqN-K+1×INK!