Metamath Proof Explorer


Theorem binomfallfaclem2

Description: Lemma for binomfallfac . Inductive step. (Contributed by Scott Fenton, 13-Mar-2018)

Ref Expression
Hypotheses binomfallfaclem.1 φA
binomfallfaclem.2 φB
binomfallfaclem.3 φN0
binomfallfaclem.4 ψA+BN_=k=0N(Nk)ANk_Bk_
Assertion binomfallfaclem2 φψA+BN+1_=k=0N+1(N+1k)AN+1-k_Bk_

Proof

Step Hyp Ref Expression
1 binomfallfaclem.1 φA
2 binomfallfaclem.2 φB
3 binomfallfaclem.3 φN0
4 binomfallfaclem.4 ψA+BN_=k=0N(Nk)ANk_Bk_
5 elfzelz k0Nk
6 bccl N0k(Nk)0
7 3 5 6 syl2an φk0N(Nk)0
8 7 nn0cnd φk0N(Nk)
9 fznn0sub k0NNk0
10 fallfaccl ANk0ANk_
11 1 9 10 syl2an φk0NANk_
12 elfznn0 k0Nk0
13 fallfaccl Bk0Bk_
14 2 12 13 syl2an φk0NBk_
15 11 14 mulcld φk0NANk_Bk_
16 1 2 addcld φA+B
17 3 nn0cnd φN
18 16 17 subcld φA+B-N
19 18 adantr φk0NA+B-N
20 8 15 19 mulassd φk0N(Nk)ANk_Bk_A+B-N=(Nk)ANk_Bk_A+B-N
21 9 nn0cnd k0NNk
22 subcl ANkANk
23 1 21 22 syl2an φk0NANk
24 12 nn0cnd k0Nk
25 subcl BkBk
26 2 24 25 syl2an φk0NBk
27 15 23 26 adddid φk0NANk_Bk_ANk+B-k=ANk_Bk_ANk+ANk_Bk_Bk
28 1 adantr φk0NA
29 17 adantr φk0NN
30 28 29 subcld φk0NAN
31 24 adantl φk0Nk
32 2 adantr φk0NB
33 30 31 32 ppncand φk0NAN+k+Bk=A-N+B
34 28 29 31 subsubd φk0NANk=A-N+k
35 34 oveq1d φk0NANk+B-k=AN+k+Bk
36 28 32 29 addsubd φk0NA+B-N=A-N+B
37 33 35 36 3eqtr4d φk0NANk+B-k=A+B-N
38 37 oveq2d φk0NANk_Bk_ANk+B-k=ANk_Bk_A+B-N
39 11 14 23 mul32d φk0NANk_Bk_ANk=ANk_ANkBk_
40 1cnd φk0N1
41 29 40 31 addsubd φk0NN+1-k=N-k+1
42 41 oveq2d φk0NAN+1-k_=AN-k+1_
43 fallfacp1 ANk0AN-k+1_=ANk_ANk
44 1 9 43 syl2an φk0NAN-k+1_=ANk_ANk
45 42 44 eqtrd φk0NAN+1-k_=ANk_ANk
46 45 oveq1d φk0NAN+1-k_Bk_=ANk_ANkBk_
47 39 46 eqtr4d φk0NANk_Bk_ANk=AN+1-k_Bk_
48 11 14 26 mulassd φk0NANk_Bk_Bk=ANk_Bk_Bk
49 fallfacp1 Bk0Bk+1_=Bk_Bk
50 2 12 49 syl2an φk0NBk+1_=Bk_Bk
51 50 oveq2d φk0NANk_Bk+1_=ANk_Bk_Bk
52 48 51 eqtr4d φk0NANk_Bk_Bk=ANk_Bk+1_
53 47 52 oveq12d φk0NANk_Bk_ANk+ANk_Bk_Bk=AN+1-k_Bk_+ANk_Bk+1_
54 27 38 53 3eqtr3d φk0NANk_Bk_A+B-N=AN+1-k_Bk_+ANk_Bk+1_
55 54 oveq2d φk0N(Nk)ANk_Bk_A+B-N=(Nk)AN+1-k_Bk_+ANk_Bk+1_
56 3 nn0zd φN
57 uzid NNN
58 peano2uz NNN+1N
59 fzss2 N+1N0N0N+1
60 56 57 58 59 4syl φ0N0N+1
61 60 sselda φk0Nk0N+1
62 fznn0sub k0N+1N+1-k0
63 fallfaccl AN+1-k0AN+1-k_
64 1 62 63 syl2an φk0N+1AN+1-k_
65 61 64 syldan φk0NAN+1-k_
66 65 14 mulcld φk0NAN+1-k_Bk_
67 peano2nn0 k0k+10
68 12 67 syl k0Nk+10
69 fallfaccl Bk+10Bk+1_
70 2 68 69 syl2an φk0NBk+1_
71 11 70 mulcld φk0NANk_Bk+1_
72 8 66 71 adddid φk0N(Nk)AN+1-k_Bk_+ANk_Bk+1_=(Nk)AN+1-k_Bk_+(Nk)ANk_Bk+1_
73 20 55 72 3eqtrd φk0N(Nk)ANk_Bk_A+B-N=(Nk)AN+1-k_Bk_+(Nk)ANk_Bk+1_
74 73 sumeq2dv φk=0N(Nk)ANk_Bk_A+B-N=k=0N(Nk)AN+1-k_Bk_+(Nk)ANk_Bk+1_
75 74 adantr φψk=0N(Nk)ANk_Bk_A+B-N=k=0N(Nk)AN+1-k_Bk_+(Nk)ANk_Bk+1_
76 16 3 fallfacp1d φA+BN+1_=A+BN_A+B-N
77 4 oveq1d ψA+BN_A+B-N=k=0N(Nk)ANk_Bk_A+B-N
78 76 77 sylan9eq φψA+BN+1_=k=0N(Nk)ANk_Bk_A+B-N
79 fzfid φ0NFin
80 8 15 mulcld φk0N(Nk)ANk_Bk_
81 79 18 80 fsummulc1 φk=0N(Nk)ANk_Bk_A+B-N=k=0N(Nk)ANk_Bk_A+B-N
82 81 adantr φψk=0N(Nk)ANk_Bk_A+B-N=k=0N(Nk)ANk_Bk_A+B-N
83 78 82 eqtrd φψA+BN+1_=k=0N(Nk)ANk_Bk_A+B-N
84 elfzelz k0N+1k
85 bcpasc N0k(Nk)+(Nk1)=(N+1k)
86 3 84 85 syl2an φk0N+1(Nk)+(Nk1)=(N+1k)
87 86 oveq1d φk0N+1(Nk)+(Nk1)AN+1-k_Bk_=(N+1k)AN+1-k_Bk_
88 3 84 6 syl2an φk0N+1(Nk)0
89 88 nn0cnd φk0N+1(Nk)
90 peano2zm kk1
91 84 90 syl k0N+1k1
92 bccl N0k1(Nk1)0
93 3 91 92 syl2an φk0N+1(Nk1)0
94 93 nn0cnd φk0N+1(Nk1)
95 elfznn0 k0N+1k0
96 2 95 13 syl2an φk0N+1Bk_
97 64 96 mulcld φk0N+1AN+1-k_Bk_
98 89 94 97 adddird φk0N+1(Nk)+(Nk1)AN+1-k_Bk_=(Nk)AN+1-k_Bk_+(Nk1)AN+1-k_Bk_
99 87 98 eqtr3d φk0N+1(N+1k)AN+1-k_Bk_=(Nk)AN+1-k_Bk_+(Nk1)AN+1-k_Bk_
100 99 sumeq2dv φk=0N+1(N+1k)AN+1-k_Bk_=k=0N+1(Nk)AN+1-k_Bk_+(Nk1)AN+1-k_Bk_
101 nn0uz 0=0
102 3 101 eleqtrdi φN0
103 89 97 mulcld φk0N+1(Nk)AN+1-k_Bk_
104 oveq2 k=N+1(Nk)=(NN+1)
105 oveq2 k=N+1N+1-k=N+1-N+1
106 105 oveq2d k=N+1AN+1-k_=AN+1-N+1_
107 oveq2 k=N+1Bk_=BN+1_
108 106 107 oveq12d k=N+1AN+1-k_Bk_=AN+1-N+1_BN+1_
109 104 108 oveq12d k=N+1(Nk)AN+1-k_Bk_=(NN+1)AN+1-N+1_BN+1_
110 102 103 109 fsump1 φk=0N+1(Nk)AN+1-k_Bk_=k=0N(Nk)AN+1-k_Bk_+(NN+1)AN+1-N+1_BN+1_
111 peano2nn0 N0N+10
112 3 111 syl φN+10
113 112 nn0zd φN+1
114 3 nn0red φN
115 114 ltp1d φN<N+1
116 115 olcd φN+1<0N<N+1
117 bcval4 N0N+1N+1<0N<N+1(NN+1)=0
118 3 113 116 117 syl3anc φ(NN+1)=0
119 118 oveq1d φ(NN+1)AN+1-N+1_BN+1_=0AN+1-N+1_BN+1_
120 112 nn0cnd φN+1
121 120 subidd φN+1-N+1=0
122 121 oveq2d φAN+1-N+1_=A0_
123 0nn0 00
124 fallfaccl A00A0_
125 1 123 124 sylancl φA0_
126 122 125 eqeltrd φAN+1-N+1_
127 fallfaccl BN+10BN+1_
128 2 112 127 syl2anc φBN+1_
129 126 128 mulcld φAN+1-N+1_BN+1_
130 129 mul02d φ0AN+1-N+1_BN+1_=0
131 119 130 eqtrd φ(NN+1)AN+1-N+1_BN+1_=0
132 131 oveq2d φk=0N(Nk)AN+1-k_Bk_+(NN+1)AN+1-N+1_BN+1_=k=0N(Nk)AN+1-k_Bk_+0
133 61 103 syldan φk0N(Nk)AN+1-k_Bk_
134 79 133 fsumcl φk=0N(Nk)AN+1-k_Bk_
135 134 addridd φk=0N(Nk)AN+1-k_Bk_+0=k=0N(Nk)AN+1-k_Bk_
136 110 132 135 3eqtrd φk=0N+1(Nk)AN+1-k_Bk_=k=0N(Nk)AN+1-k_Bk_
137 112 101 eleqtrdi φN+10
138 94 97 mulcld φk0N+1(Nk1)AN+1-k_Bk_
139 oveq1 k=0k1=01
140 df-neg 1=01
141 139 140 eqtr4di k=0k1=1
142 141 oveq2d k=0(Nk1)=(N1)
143 oveq2 k=0N+1-k=N+1-0
144 143 oveq2d k=0AN+1-k_=AN+1-0_
145 oveq2 k=0Bk_=B0_
146 144 145 oveq12d k=0AN+1-k_Bk_=AN+1-0_B0_
147 142 146 oveq12d k=0(Nk1)AN+1-k_Bk_=(N1)AN+1-0_B0_
148 137 138 147 fsum1p φk=0N+1(Nk1)AN+1-k_Bk_=(N1)AN+1-0_B0_+k=0+1N+1(Nk1)AN+1-k_Bk_
149 neg1z 1
150 neg1lt0 1<0
151 150 orci 1<0N<1
152 bcval4 N011<0N<1(N1)=0
153 149 151 152 mp3an23 N0(N1)=0
154 3 153 syl φ(N1)=0
155 154 oveq1d φ(N1)AN+1-0_B0_=0AN+1-0_B0_
156 120 subid1d φN+1-0=N+1
157 156 oveq2d φAN+1-0_=AN+1_
158 fallfaccl AN+10AN+1_
159 1 112 158 syl2anc φAN+1_
160 157 159 eqeltrd φAN+1-0_
161 fallfaccl B00B0_
162 2 123 161 sylancl φB0_
163 160 162 mulcld φAN+1-0_B0_
164 163 mul02d φ0AN+1-0_B0_=0
165 155 164 eqtrd φ(N1)AN+1-0_B0_=0
166 1zzd φ1
167 0zd φ0
168 1 2 3 binomfallfaclem1 φj0N(Nj)ANj_Bj+1_
169 oveq2 j=k1(Nj)=(Nk1)
170 oveq2 j=k1Nj=Nk1
171 170 oveq2d j=k1ANj_=ANk1_
172 oveq1 j=k1j+1=k-1+1
173 172 oveq2d j=k1Bj+1_=Bk-1+1_
174 171 173 oveq12d j=k1ANj_Bj+1_=ANk1_Bk-1+1_
175 169 174 oveq12d j=k1(Nj)ANj_Bj+1_=(Nk1)ANk1_Bk-1+1_
176 166 167 56 168 175 fsumshft φj=0N(Nj)ANj_Bj+1_=k=0+1N+1(Nk1)ANk1_Bk-1+1_
177 17 adantr φk0+1N+1N
178 elfzelz k0+1N+1k
179 178 adantl φk0+1N+1k
180 179 zcnd φk0+1N+1k
181 1cnd φk0+1N+11
182 177 180 181 subsub3d φk0+1N+1Nk1=N+1-k
183 182 oveq2d φk0+1N+1ANk1_=AN+1-k_
184 180 181 npcand φk0+1N+1k-1+1=k
185 184 oveq2d φk0+1N+1Bk-1+1_=Bk_
186 183 185 oveq12d φk0+1N+1ANk1_Bk-1+1_=AN+1-k_Bk_
187 186 oveq2d φk0+1N+1(Nk1)ANk1_Bk-1+1_=(Nk1)AN+1-k_Bk_
188 187 sumeq2dv φk=0+1N+1(Nk1)ANk1_Bk-1+1_=k=0+1N+1(Nk1)AN+1-k_Bk_
189 176 188 eqtr2d φk=0+1N+1(Nk1)AN+1-k_Bk_=j=0N(Nj)ANj_Bj+1_
190 oveq2 k=j(Nk)=(Nj)
191 oveq2 k=jNk=Nj
192 191 oveq2d k=jANk_=ANj_
193 oveq1 k=jk+1=j+1
194 193 oveq2d k=jBk+1_=Bj+1_
195 192 194 oveq12d k=jANk_Bk+1_=ANj_Bj+1_
196 190 195 oveq12d k=j(Nk)ANk_Bk+1_=(Nj)ANj_Bj+1_
197 196 cbvsumv k=0N(Nk)ANk_Bk+1_=j=0N(Nj)ANj_Bj+1_
198 189 197 eqtr4di φk=0+1N+1(Nk1)AN+1-k_Bk_=k=0N(Nk)ANk_Bk+1_
199 165 198 oveq12d φ(N1)AN+1-0_B0_+k=0+1N+1(Nk1)AN+1-k_Bk_=0+k=0N(Nk)ANk_Bk+1_
200 1 2 3 binomfallfaclem1 φk0N(Nk)ANk_Bk+1_
201 79 200 fsumcl φk=0N(Nk)ANk_Bk+1_
202 201 addlidd φ0+k=0N(Nk)ANk_Bk+1_=k=0N(Nk)ANk_Bk+1_
203 148 199 202 3eqtrd φk=0N+1(Nk1)AN+1-k_Bk_=k=0N(Nk)ANk_Bk+1_
204 136 203 oveq12d φk=0N+1(Nk)AN+1-k_Bk_+k=0N+1(Nk1)AN+1-k_Bk_=k=0N(Nk)AN+1-k_Bk_+k=0N(Nk)ANk_Bk+1_
205 fzfid φ0N+1Fin
206 205 103 138 fsumadd φk=0N+1(Nk)AN+1-k_Bk_+(Nk1)AN+1-k_Bk_=k=0N+1(Nk)AN+1-k_Bk_+k=0N+1(Nk1)AN+1-k_Bk_
207 79 133 200 fsumadd φk=0N(Nk)AN+1-k_Bk_+(Nk)ANk_Bk+1_=k=0N(Nk)AN+1-k_Bk_+k=0N(Nk)ANk_Bk+1_
208 204 206 207 3eqtr4d φk=0N+1(Nk)AN+1-k_Bk_+(Nk1)AN+1-k_Bk_=k=0N(Nk)AN+1-k_Bk_+(Nk)ANk_Bk+1_
209 100 208 eqtrd φk=0N+1(N+1k)AN+1-k_Bk_=k=0N(Nk)AN+1-k_Bk_+(Nk)ANk_Bk+1_
210 209 adantr φψk=0N+1(N+1k)AN+1-k_Bk_=k=0N(Nk)AN+1-k_Bk_+(Nk)ANk_Bk+1_
211 75 83 210 3eqtr4d φψA+BN+1_=k=0N+1(N+1k)AN+1-k_Bk_