Metamath Proof Explorer


Theorem blcld

Description: A "closed ball" in a metric space is actually closed. (Contributed by Mario Carneiro, 31-Dec-2013) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypotheses mopni.1 J=MetOpenD
blcld.3 S=zX|PDzR
Assertion blcld D∞MetXPXR*SClsdJ

Proof

Step Hyp Ref Expression
1 mopni.1 J=MetOpenD
2 blcld.3 S=zX|PDzR
3 1 mopnuni D∞MetXX=J
4 3 3ad2ant1 D∞MetXPXR*X=J
5 4 difeq1d D∞MetXPXR*XS=JS
6 difssd D∞MetXPXR*XSX
7 simpl3 D∞MetXPXR*yXSR*
8 simpl1 D∞MetXPXR*yXSD∞MetX
9 simpl2 D∞MetXPXR*yXSPX
10 eldifi yXSyX
11 10 adantl D∞MetXPXR*yXSyX
12 xmetcl D∞MetXPXyXPDy*
13 8 9 11 12 syl3anc D∞MetXPXR*yXSPDy*
14 eldif yXSyX¬yS
15 oveq2 z=yPDz=PDy
16 15 breq1d z=yPDzRPDyR
17 16 2 elrab2 ySyXPDyR
18 17 simplbi2 yXPDyRyS
19 18 con3dimp yX¬yS¬PDyR
20 14 19 sylbi yXS¬PDyR
21 20 adantl D∞MetXPXR*yXS¬PDyR
22 xrltnle R*PDy*R<PDy¬PDyR
23 7 13 22 syl2anc D∞MetXPXR*yXSR<PDy¬PDyR
24 21 23 mpbird D∞MetXPXR*yXSR<PDy
25 qbtwnxr R*PDy*R<PDyxR<xx<PDy
26 7 13 24 25 syl3anc D∞MetXPXR*yXSxR<xx<PDy
27 qre xx
28 8 adantr D∞MetXPXR*yXSxR<xx<PDyD∞MetX
29 11 adantr D∞MetXPXR*yXSxR<xx<PDyyX
30 13 adantr D∞MetXPXR*yXSxR<xx<PDyPDy*
31 rexr xx*
32 31 ad2antrl D∞MetXPXR*yXSxR<xx<PDyx*
33 32 xnegcld D∞MetXPXR*yXSxR<xx<PDyx*
34 30 33 xaddcld D∞MetXPXR*yXSxR<xx<PDyPDy+𝑒x*
35 blelrn D∞MetXyXPDy+𝑒x*yballDPDy+𝑒xranballD
36 28 29 34 35 syl3anc D∞MetXPXR*yXSxR<xx<PDyyballDPDy+𝑒xranballD
37 simprrr D∞MetXPXR*yXSxR<xx<PDyx<PDy
38 xposdif x*PDy*x<PDy0<PDy+𝑒x
39 32 30 38 syl2anc D∞MetXPXR*yXSxR<xx<PDyx<PDy0<PDy+𝑒x
40 37 39 mpbid D∞MetXPXR*yXSxR<xx<PDy0<PDy+𝑒x
41 xblcntr D∞MetXyXPDy+𝑒x*0<PDy+𝑒xyyballDPDy+𝑒x
42 28 29 34 40 41 syl112anc D∞MetXPXR*yXSxR<xx<PDyyyballDPDy+𝑒x
43 incom yballDPDy+𝑒xPballDx=PballDxyballDPDy+𝑒x
44 9 adantr D∞MetXPXR*yXSxR<xx<PDyPX
45 xaddcom x*PDy+𝑒x*x+𝑒PDy+𝑒x=PDy+𝑒x+𝑒x
46 32 34 45 syl2anc D∞MetXPXR*yXSxR<xx<PDyx+𝑒PDy+𝑒x=PDy+𝑒x+𝑒x
47 simprl D∞MetXPXR*yXSxR<xx<PDyx
48 xnpcan PDy*xPDy+𝑒x+𝑒x=PDy
49 30 47 48 syl2anc D∞MetXPXR*yXSxR<xx<PDyPDy+𝑒x+𝑒x=PDy
50 46 49 eqtrd D∞MetXPXR*yXSxR<xx<PDyx+𝑒PDy+𝑒x=PDy
51 30 xrleidd D∞MetXPXR*yXSxR<xx<PDyPDyPDy
52 50 51 eqbrtrd D∞MetXPXR*yXSxR<xx<PDyx+𝑒PDy+𝑒xPDy
53 bldisj D∞MetXPXyXx*PDy+𝑒x*x+𝑒PDy+𝑒xPDyPballDxyballDPDy+𝑒x=
54 28 44 29 32 34 52 53 syl33anc D∞MetXPXR*yXSxR<xx<PDyPballDxyballDPDy+𝑒x=
55 43 54 eqtrid D∞MetXPXR*yXSxR<xx<PDyyballDPDy+𝑒xPballDx=
56 blssm D∞MetXyXPDy+𝑒x*yballDPDy+𝑒xX
57 28 29 34 56 syl3anc D∞MetXPXR*yXSxR<xx<PDyyballDPDy+𝑒xX
58 reldisj yballDPDy+𝑒xXyballDPDy+𝑒xPballDx=yballDPDy+𝑒xXPballDx
59 57 58 syl D∞MetXPXR*yXSxR<xx<PDyyballDPDy+𝑒xPballDx=yballDPDy+𝑒xXPballDx
60 55 59 mpbid D∞MetXPXR*yXSxR<xx<PDyyballDPDy+𝑒xXPballDx
61 7 adantr D∞MetXPXR*yXSxR<xx<PDyR*
62 simprrl D∞MetXPXR*yXSxR<xx<PDyR<x
63 1 2 blsscls2 D∞MetXPXR*x*R<xSPballDx
64 28 44 61 32 62 63 syl23anc D∞MetXPXR*yXSxR<xx<PDySPballDx
65 64 sscond D∞MetXPXR*yXSxR<xx<PDyXPballDxXS
66 60 65 sstrd D∞MetXPXR*yXSxR<xx<PDyyballDPDy+𝑒xXS
67 eleq2 w=yballDPDy+𝑒xywyyballDPDy+𝑒x
68 sseq1 w=yballDPDy+𝑒xwXSyballDPDy+𝑒xXS
69 67 68 anbi12d w=yballDPDy+𝑒xywwXSyyballDPDy+𝑒xyballDPDy+𝑒xXS
70 69 rspcev yballDPDy+𝑒xranballDyyballDPDy+𝑒xyballDPDy+𝑒xXSwranballDywwXS
71 36 42 66 70 syl12anc D∞MetXPXR*yXSxR<xx<PDywranballDywwXS
72 71 expr D∞MetXPXR*yXSxR<xx<PDywranballDywwXS
73 27 72 sylan2 D∞MetXPXR*yXSxR<xx<PDywranballDywwXS
74 73 rexlimdva D∞MetXPXR*yXSxR<xx<PDywranballDywwXS
75 26 74 mpd D∞MetXPXR*yXSwranballDywwXS
76 75 ralrimiva D∞MetXPXR*yXSwranballDywwXS
77 1 elmopn D∞MetXXSJXSXyXSwranballDywwXS
78 77 3ad2ant1 D∞MetXPXR*XSJXSXyXSwranballDywwXS
79 6 76 78 mpbir2and D∞MetXPXR*XSJ
80 5 79 eqeltrrd D∞MetXPXR*JSJ
81 1 mopntop D∞MetXJTop
82 81 3ad2ant1 D∞MetXPXR*JTop
83 2 ssrab3 SX
84 83 4 sseqtrid D∞MetXPXR*SJ
85 eqid J=J
86 85 iscld2 JTopSJSClsdJJSJ
87 82 84 86 syl2anc D∞MetXPXR*SClsdJJSJ
88 80 87 mpbird D∞MetXPXR*SClsdJ