Metamath Proof Explorer


Theorem bpolylem

Description: Lemma for bpolyval . (Contributed by Scott Fenton, 22-May-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses bpoly.1 G=gVdomg/nXnkdomg(nk)gkn-k+1
bpoly.2 F=wrecs<0G
Assertion bpolylem N0XNBernPolyX=XNk=0N1(Nk)kBernPolyXN-k+1

Proof

Step Hyp Ref Expression
1 bpoly.1 G=gVdomg/nXnkdomg(nk)gkn-k+1
2 bpoly.2 F=wrecs<0G
3 oveq1 x=Xxn=Xn
4 3 oveq1d x=Xxnkdomg(nk)gkn-k+1=Xnkdomg(nk)gkn-k+1
5 4 csbeq2dv x=Xdomg/nxnkdomg(nk)gkn-k+1=domg/nXnkdomg(nk)gkn-k+1
6 5 mpteq2dv x=XgVdomg/nxnkdomg(nk)gkn-k+1=gVdomg/nXnkdomg(nk)gkn-k+1
7 6 1 eqtr4di x=XgVdomg/nxnkdomg(nk)gkn-k+1=G
8 wrecseq3 gVdomg/nxnkdomg(nk)gkn-k+1=Gwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1=wrecs<0G
9 7 8 syl x=Xwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1=wrecs<0G
10 9 2 eqtr4di x=Xwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1=F
11 10 fveq1d x=Xwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1m=Fm
12 fveq2 m=NFm=FN
13 11 12 sylan9eqr m=Nx=Xwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1m=FN
14 df-bpoly BernPoly=m0,xwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1m
15 fvex FNV
16 13 14 15 ovmpoa N0XNBernPolyX=FN
17 ltweuz <We0
18 nn0uz 0=0
19 weeq2 0=0<We0<We0
20 18 19 ax-mp <We0<We0
21 17 20 mpbir <We0
22 nn0ex 0V
23 exse 0V<Se0
24 22 23 ax-mp <Se0
25 2 wfr2 <We0<Se0N0FN=GFPred<0N
26 21 24 25 mpanl12 N0FN=GFPred<0N
27 26 adantr N0XFN=GFPred<0N
28 prednn0 N0Pred<0N=0N1
29 28 adantr N0XPred<0N=0N1
30 29 reseq2d N0XFPred<0N=F0N1
31 30 fveq2d N0XGFPred<0N=GF0N1
32 2 wfrfun <We0<Se0FunF
33 21 24 32 mp2an FunF
34 ovex 0N1V
35 resfunexg FunF0N1VF0N1V
36 33 34 35 mp2an F0N1V
37 dmeq g=F0N1domg=domF0N1
38 2 wfr1 <We0<Se0FFn0
39 21 24 38 mp2an FFn0
40 fz0ssnn0 0N10
41 fnssres FFn00N10F0N1Fn0N1
42 39 40 41 mp2an F0N1Fn0N1
43 42 fndmi domF0N1=0N1
44 37 43 eqtrdi g=F0N1domg=0N1
45 44 fveq2d g=F0N1domg=0N1
46 fveq1 g=F0N1gk=F0N1k
47 fvres k0N1F0N1k=Fk
48 46 47 sylan9eq g=F0N1k0N1gk=Fk
49 48 oveq1d g=F0N1k0N1gkn-k+1=Fkn-k+1
50 49 oveq2d g=F0N1k0N1(nk)gkn-k+1=(nk)Fkn-k+1
51 44 50 sumeq12rdv g=F0N1kdomg(nk)gkn-k+1=k=0N1(nk)Fkn-k+1
52 51 oveq2d g=F0N1Xnkdomg(nk)gkn-k+1=Xnk=0N1(nk)Fkn-k+1
53 45 52 csbeq12dv g=F0N1domg/nXnkdomg(nk)gkn-k+1=0N1/nXnk=0N1(nk)Fkn-k+1
54 ovex Xnk=0N1(nk)Fkn-k+1V
55 54 csbex 0N1/nXnk=0N1(nk)Fkn-k+1V
56 53 1 55 fvmpt F0N1VGF0N1=0N1/nXnk=0N1(nk)Fkn-k+1
57 36 56 ax-mp GF0N1=0N1/nXnk=0N1(nk)Fkn-k+1
58 nfcvd N0_nXNk=0N1(Nk)FkN-k+1
59 oveq2 n=NXn=XN
60 oveq1 n=N(nk)=(Nk)
61 oveq1 n=Nnk=Nk
62 61 oveq1d n=Nn-k+1=N-k+1
63 62 oveq2d n=NFkn-k+1=FkN-k+1
64 60 63 oveq12d n=N(nk)Fkn-k+1=(Nk)FkN-k+1
65 64 sumeq2sdv n=Nk=0N1(nk)Fkn-k+1=k=0N1(Nk)FkN-k+1
66 59 65 oveq12d n=NXnk=0N1(nk)Fkn-k+1=XNk=0N1(Nk)FkN-k+1
67 58 66 csbiegf N0N/nXnk=0N1(nk)Fkn-k+1=XNk=0N1(Nk)FkN-k+1
68 67 adantr N0XN/nXnk=0N1(nk)Fkn-k+1=XNk=0N1(Nk)FkN-k+1
69 nn0z N0N
70 fz01en N0N11N
71 69 70 syl N00N11N
72 fzfi 0N1Fin
73 fzfi 1NFin
74 hashen 0N1Fin1NFin0N1=1N0N11N
75 72 73 74 mp2an 0N1=1N0N11N
76 71 75 sylibr N00N1=1N
77 hashfz1 N01N=N
78 76 77 eqtrd N00N1=N
79 78 adantr N0X0N1=N
80 79 csbeq1d N0X0N1/nXnk=0N1(nk)Fkn-k+1=N/nXnk=0N1(nk)Fkn-k+1
81 elfznn0 k0N1k0
82 simpr N0XX
83 fveq2 m=kFm=Fk
84 11 83 sylan9eqr m=kx=Xwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1m=Fk
85 fvex FkV
86 84 14 85 ovmpoa k0XkBernPolyX=Fk
87 81 82 86 syl2anr N0Xk0N1kBernPolyX=Fk
88 87 oveq1d N0Xk0N1kBernPolyXN-k+1=FkN-k+1
89 88 oveq2d N0Xk0N1(Nk)kBernPolyXN-k+1=(Nk)FkN-k+1
90 89 sumeq2dv N0Xk=0N1(Nk)kBernPolyXN-k+1=k=0N1(Nk)FkN-k+1
91 90 oveq2d N0XXNk=0N1(Nk)kBernPolyXN-k+1=XNk=0N1(Nk)FkN-k+1
92 68 80 91 3eqtr4d N0X0N1/nXnk=0N1(nk)Fkn-k+1=XNk=0N1(Nk)kBernPolyXN-k+1
93 57 92 eqtrid N0XGF0N1=XNk=0N1(Nk)kBernPolyXN-k+1
94 31 93 eqtrd N0XGFPred<0N=XNk=0N1(Nk)kBernPolyXN-k+1
95 16 27 94 3eqtrd N0XNBernPolyX=XNk=0N1(Nk)kBernPolyXN-k+1