Metamath Proof Explorer


Theorem carsgclctunlem1

Description: Lemma for carsgclctun . (Contributed by Thierry Arnoux, 23-May-2020)

Ref Expression
Hypotheses carsgval.1 φOV
carsgval.2 φM:𝒫O0+∞
carsgsiga.1 φM=0
carsgsiga.2 φxωx𝒫OMx*yxMy
fiunelcarsg.1 φAFin
fiunelcarsg.2 φAtoCaraSigaM
carsgclctunlem1.1 φDisjyAy
carsgclctunlem1.2 φE𝒫O
Assertion carsgclctunlem1 φMEA=*yAMEy

Proof

Step Hyp Ref Expression
1 carsgval.1 φOV
2 carsgval.2 φM:𝒫O0+∞
3 carsgsiga.1 φM=0
4 carsgsiga.2 φxωx𝒫OMx*yxMy
5 fiunelcarsg.1 φAFin
6 fiunelcarsg.2 φAtoCaraSigaM
7 carsgclctunlem1.1 φDisjyAy
8 carsgclctunlem1.2 φE𝒫O
9 unieq a=a=
10 9 ineq2d a=Ea=E
11 10 fveq2d a=MEa=ME
12 esumeq1 a=*yaMEy=*yMEy
13 11 12 eqeq12d a=MEa=*yaMEyME=*yMEy
14 unieq a=ba=b
15 14 ineq2d a=bEa=Eb
16 15 fveq2d a=bMEa=MEb
17 esumeq1 a=b*yaMEy=*ybMEy
18 16 17 eqeq12d a=bMEa=*yaMEyMEb=*ybMEy
19 unieq a=bxa=bx
20 19 ineq2d a=bxEa=Ebx
21 20 fveq2d a=bxMEa=MEbx
22 esumeq1 a=bx*yaMEy=*ybxMEy
23 21 22 eqeq12d a=bxMEa=*yaMEyMEbx=*ybxMEy
24 unieq a=Aa=A
25 24 ineq2d a=AEa=EA
26 25 fveq2d a=AMEa=MEA
27 esumeq1 a=A*yaMEy=*yAMEy
28 26 27 eqeq12d a=AMEa=*yaMEyMEA=*yAMEy
29 uni0 =
30 29 ineq2i E=E
31 in0 E=
32 30 31 eqtri E=
33 32 fveq2i ME=M
34 esumnul *yMEy=0
35 3 33 34 3eqtr4g φME=*yMEy
36 simpr φbAxAbMEb=*ybMEyMEb=*ybMEy
37 36 eqcomd φbAxAbMEb=*ybMEy*ybMEy=MEb
38 simpr φbAxAby=xy=x
39 38 ineq2d φbAxAby=xEy=Ex
40 39 fveq2d φbAxAby=xMEy=MEx
41 simprr φbAxAbxAb
42 2 adantr φbAxAbM:𝒫O0+∞
43 8 adantr φbAxAbE𝒫O
44 43 elpwincl1 φbAxAbEx𝒫O
45 42 44 ffvelcdmd φbAxAbMEx0+∞
46 40 41 45 esumsn φbAxAb*yxMEy=MEx
47 46 adantr φbAxAbMEb=*ybMEy*yxMEy=MEx
48 37 47 oveq12d φbAxAbMEb=*ybMEy*ybMEy+𝑒*yxMEy=MEb+𝑒MEx
49 nfv yφbAxAb
50 nfcv _yb
51 nfcv _yx
52 vex bV
53 52 a1i φbAxAbbV
54 vsnex xV
55 54 a1i φbAxAbxV
56 41 eldifbd φbAxAb¬xb
57 disjsn bx=¬xb
58 56 57 sylibr φbAxAbbx=
59 2 ad2antrr φbAxAbybM:𝒫O0+∞
60 8 ad2antrr φbAxAbybE𝒫O
61 60 elpwincl1 φbAxAbybEy𝒫O
62 59 61 ffvelcdmd φbAxAbybMEy0+∞
63 2 ad2antrr φbAxAbyxM:𝒫O0+∞
64 8 ad2antrr φbAxAbyxE𝒫O
65 64 elpwincl1 φbAxAbyxEy𝒫O
66 63 65 ffvelcdmd φbAxAbyxMEy0+∞
67 49 50 51 53 55 58 62 66 esumsplit φbAxAb*ybxMEy=*ybMEy+𝑒*yxMEy
68 67 adantr φbAxAbMEb=*ybMEy*ybxMEy=*ybMEy+𝑒*yxMEy
69 uniun bx=bx
70 unisnv x=x
71 70 uneq2i bx=bx
72 69 71 eqtri bx=bx
73 72 ineq2i Ebx=Ebx
74 73 fveq2i MEbx=MEbx
75 inass Ebxb=Ebxb
76 indir bxb=bbxb
77 inidm bb=b
78 77 a1i φbAxAbbb=b
79 incom bx=xb
80 7 adantr φbAxAbDisjyAy
81 simpr φbAbA
82 81 adantrr φbAxAbbA
83 80 82 41 disjuniel φbAxAbbx=
84 79 83 eqtr3id φbAxAbxb=
85 78 84 uneq12d φbAxAbbbxb=b
86 un0 b=b
87 85 86 eqtrdi φbAxAbbbxb=b
88 76 87 eqtrid φbAxAbbxb=b
89 88 ineq2d φbAxAbEbxb=Eb
90 75 89 eqtrid φbAxAbEbxb=Eb
91 90 fveq2d φbAxAbMEbxb=MEb
92 indif2 Ebxb=Ebxb
93 uncom bx=xb
94 93 difeq1i bxb=xbb
95 difun2 xbb=xb
96 disj3 xb=x=xb
97 96 biimpi xb=x=xb
98 95 97 eqtr4id xb=xbb=x
99 94 98 eqtrid xb=bxb=x
100 84 99 syl φbAxAbbxb=x
101 100 ineq2d φbAxAbEbxb=Ex
102 92 101 eqtr3id φbAxAbEbxb=Ex
103 102 fveq2d φbAxAbMEbxb=MEx
104 91 103 oveq12d φbAxAbMEbxb+𝑒MEbxb=MEb+𝑒MEx
105 1 adantr φbAOV
106 2 adantr φbAM:𝒫O0+∞
107 3 adantr φbAM=0
108 4 3adant1r φbAxωx𝒫OMx*yxMy
109 ssfi AFinbAbFin
110 5 109 sylan φbAbFin
111 6 adantr φbAAtoCaraSigaM
112 81 111 sstrd φbAbtoCaraSigaM
113 105 106 107 108 110 112 fiunelcarsg φbAbtoCaraSigaM
114 1 2 elcarsg φbtoCaraSigaMbOe𝒫OMeb+𝑒Meb=Me
115 114 adantr φbAbtoCaraSigaMbOe𝒫OMeb+𝑒Meb=Me
116 113 115 mpbid φbAbOe𝒫OMeb+𝑒Meb=Me
117 116 simprd φbAe𝒫OMeb+𝑒Meb=Me
118 117 adantrr φbAxAbe𝒫OMeb+𝑒Meb=Me
119 43 elpwincl1 φbAxAbEbx𝒫O
120 simpr φbAxAbe=Ebxe=Ebx
121 120 ineq1d φbAxAbe=Ebxeb=Ebxb
122 121 fveq2d φbAxAbe=EbxMeb=MEbxb
123 120 difeq1d φbAxAbe=Ebxeb=Ebxb
124 123 fveq2d φbAxAbe=EbxMeb=MEbxb
125 122 124 oveq12d φbAxAbe=EbxMeb+𝑒Meb=MEbxb+𝑒MEbxb
126 120 fveq2d φbAxAbe=EbxMe=MEbx
127 125 126 eqeq12d φbAxAbe=EbxMeb+𝑒Meb=MeMEbxb+𝑒MEbxb=MEbx
128 119 127 rspcdv φbAxAbe𝒫OMeb+𝑒Meb=MeMEbxb+𝑒MEbxb=MEbx
129 118 128 mpd φbAxAbMEbxb+𝑒MEbxb=MEbx
130 104 129 eqtr3d φbAxAbMEb+𝑒MEx=MEbx
131 130 adantr φbAxAbMEb=*ybMEyMEb+𝑒MEx=MEbx
132 74 131 eqtr4id φbAxAbMEb=*ybMEyMEbx=MEb+𝑒MEx
133 48 68 132 3eqtr4rd φbAxAbMEb=*ybMEyMEbx=*ybxMEy
134 133 ex φbAxAbMEb=*ybMEyMEbx=*ybxMEy
135 13 18 23 28 35 134 5 findcard2d φMEA=*yAMEy