Metamath Proof Explorer


Theorem carsgclctunlem1

Description: Lemma for carsgclctun . (Contributed by Thierry Arnoux, 23-May-2020)

Ref Expression
Hypotheses carsgval.1 φ O V
carsgval.2 φ M : 𝒫 O 0 +∞
carsgsiga.1 φ M = 0
carsgsiga.2 φ x ω x 𝒫 O M x * y x M y
fiunelcarsg.1 φ A Fin
fiunelcarsg.2 φ A toCaraSiga M
carsgclctunlem1.1 φ Disj y A y
carsgclctunlem1.2 φ E 𝒫 O
Assertion carsgclctunlem1 φ M E A = * y A M E y

Proof

Step Hyp Ref Expression
1 carsgval.1 φ O V
2 carsgval.2 φ M : 𝒫 O 0 +∞
3 carsgsiga.1 φ M = 0
4 carsgsiga.2 φ x ω x 𝒫 O M x * y x M y
5 fiunelcarsg.1 φ A Fin
6 fiunelcarsg.2 φ A toCaraSiga M
7 carsgclctunlem1.1 φ Disj y A y
8 carsgclctunlem1.2 φ E 𝒫 O
9 unieq a = a =
10 9 ineq2d a = E a = E
11 10 fveq2d a = M E a = M E
12 esumeq1 a = * y a M E y = * y M E y
13 11 12 eqeq12d a = M E a = * y a M E y M E = * y M E y
14 unieq a = b a = b
15 14 ineq2d a = b E a = E b
16 15 fveq2d a = b M E a = M E b
17 esumeq1 a = b * y a M E y = * y b M E y
18 16 17 eqeq12d a = b M E a = * y a M E y M E b = * y b M E y
19 unieq a = b x a = b x
20 19 ineq2d a = b x E a = E b x
21 20 fveq2d a = b x M E a = M E b x
22 esumeq1 a = b x * y a M E y = * y b x M E y
23 21 22 eqeq12d a = b x M E a = * y a M E y M E b x = * y b x M E y
24 unieq a = A a = A
25 24 ineq2d a = A E a = E A
26 25 fveq2d a = A M E a = M E A
27 esumeq1 a = A * y a M E y = * y A M E y
28 26 27 eqeq12d a = A M E a = * y a M E y M E A = * y A M E y
29 uni0 =
30 29 ineq2i E = E
31 in0 E =
32 30 31 eqtri E =
33 32 fveq2i M E = M
34 esumnul * y M E y = 0
35 3 33 34 3eqtr4g φ M E = * y M E y
36 simpr φ b A x A b M E b = * y b M E y M E b = * y b M E y
37 36 eqcomd φ b A x A b M E b = * y b M E y * y b M E y = M E b
38 simpr φ b A x A b y = x y = x
39 38 ineq2d φ b A x A b y = x E y = E x
40 39 fveq2d φ b A x A b y = x M E y = M E x
41 simprr φ b A x A b x A b
42 2 adantr φ b A x A b M : 𝒫 O 0 +∞
43 8 adantr φ b A x A b E 𝒫 O
44 43 elpwincl1 φ b A x A b E x 𝒫 O
45 42 44 ffvelrnd φ b A x A b M E x 0 +∞
46 40 41 45 esumsn φ b A x A b * y x M E y = M E x
47 46 adantr φ b A x A b M E b = * y b M E y * y x M E y = M E x
48 37 47 oveq12d φ b A x A b M E b = * y b M E y * y b M E y + 𝑒 * y x M E y = M E b + 𝑒 M E x
49 nfv y φ b A x A b
50 nfcv _ y b
51 nfcv _ y x
52 vex b V
53 52 a1i φ b A x A b b V
54 snex x V
55 54 a1i φ b A x A b x V
56 41 eldifbd φ b A x A b ¬ x b
57 disjsn b x = ¬ x b
58 56 57 sylibr φ b A x A b b x =
59 2 ad2antrr φ b A x A b y b M : 𝒫 O 0 +∞
60 8 ad2antrr φ b A x A b y b E 𝒫 O
61 60 elpwincl1 φ b A x A b y b E y 𝒫 O
62 59 61 ffvelrnd φ b A x A b y b M E y 0 +∞
63 2 ad2antrr φ b A x A b y x M : 𝒫 O 0 +∞
64 8 ad2antrr φ b A x A b y x E 𝒫 O
65 64 elpwincl1 φ b A x A b y x E y 𝒫 O
66 63 65 ffvelrnd φ b A x A b y x M E y 0 +∞
67 49 50 51 53 55 58 62 66 esumsplit φ b A x A b * y b x M E y = * y b M E y + 𝑒 * y x M E y
68 67 adantr φ b A x A b M E b = * y b M E y * y b x M E y = * y b M E y + 𝑒 * y x M E y
69 uniun b x = b x
70 vex x V
71 70 unisn x = x
72 71 uneq2i b x = b x
73 69 72 eqtri b x = b x
74 73 ineq2i E b x = E b x
75 74 fveq2i M E b x = M E b x
76 inass E b x b = E b x b
77 indir b x b = b b x b
78 inidm b b = b
79 78 a1i φ b A x A b b b = b
80 incom b x = x b
81 7 adantr φ b A x A b Disj y A y
82 simpr φ b A b A
83 82 adantrr φ b A x A b b A
84 81 83 41 disjuniel φ b A x A b b x =
85 80 84 eqtr3id φ b A x A b x b =
86 79 85 uneq12d φ b A x A b b b x b = b
87 un0 b = b
88 86 87 eqtrdi φ b A x A b b b x b = b
89 77 88 eqtrid φ b A x A b b x b = b
90 89 ineq2d φ b A x A b E b x b = E b
91 76 90 eqtrid φ b A x A b E b x b = E b
92 91 fveq2d φ b A x A b M E b x b = M E b
93 indif2 E b x b = E b x b
94 uncom b x = x b
95 94 difeq1i b x b = x b b
96 difun2 x b b = x b
97 disj3 x b = x = x b
98 97 biimpi x b = x = x b
99 96 98 eqtr4id x b = x b b = x
100 95 99 eqtrid x b = b x b = x
101 85 100 syl φ b A x A b b x b = x
102 101 ineq2d φ b A x A b E b x b = E x
103 93 102 eqtr3id φ b A x A b E b x b = E x
104 103 fveq2d φ b A x A b M E b x b = M E x
105 92 104 oveq12d φ b A x A b M E b x b + 𝑒 M E b x b = M E b + 𝑒 M E x
106 1 adantr φ b A O V
107 2 adantr φ b A M : 𝒫 O 0 +∞
108 3 adantr φ b A M = 0
109 4 3adant1r φ b A x ω x 𝒫 O M x * y x M y
110 ssfi A Fin b A b Fin
111 5 110 sylan φ b A b Fin
112 6 adantr φ b A A toCaraSiga M
113 82 112 sstrd φ b A b toCaraSiga M
114 106 107 108 109 111 113 fiunelcarsg φ b A b toCaraSiga M
115 1 2 elcarsg φ b toCaraSiga M b O e 𝒫 O M e b + 𝑒 M e b = M e
116 115 adantr φ b A b toCaraSiga M b O e 𝒫 O M e b + 𝑒 M e b = M e
117 114 116 mpbid φ b A b O e 𝒫 O M e b + 𝑒 M e b = M e
118 117 simprd φ b A e 𝒫 O M e b + 𝑒 M e b = M e
119 118 adantrr φ b A x A b e 𝒫 O M e b + 𝑒 M e b = M e
120 43 elpwincl1 φ b A x A b E b x 𝒫 O
121 simpr φ b A x A b e = E b x e = E b x
122 121 ineq1d φ b A x A b e = E b x e b = E b x b
123 122 fveq2d φ b A x A b e = E b x M e b = M E b x b
124 121 difeq1d φ b A x A b e = E b x e b = E b x b
125 124 fveq2d φ b A x A b e = E b x M e b = M E b x b
126 123 125 oveq12d φ b A x A b e = E b x M e b + 𝑒 M e b = M E b x b + 𝑒 M E b x b
127 121 fveq2d φ b A x A b e = E b x M e = M E b x
128 126 127 eqeq12d φ b A x A b e = E b x M e b + 𝑒 M e b = M e M E b x b + 𝑒 M E b x b = M E b x
129 120 128 rspcdv φ b A x A b e 𝒫 O M e b + 𝑒 M e b = M e M E b x b + 𝑒 M E b x b = M E b x
130 119 129 mpd φ b A x A b M E b x b + 𝑒 M E b x b = M E b x
131 105 130 eqtr3d φ b A x A b M E b + 𝑒 M E x = M E b x
132 131 adantr φ b A x A b M E b = * y b M E y M E b + 𝑒 M E x = M E b x
133 75 132 eqtr4id φ b A x A b M E b = * y b M E y M E b x = M E b + 𝑒 M E x
134 48 68 133 3eqtr4rd φ b A x A b M E b = * y b M E y M E b x = * y b x M E y
135 134 ex φ b A x A b M E b = * y b M E y M E b x = * y b x M E y
136 13 18 23 28 35 135 5 findcard2d φ M E A = * y A M E y