Metamath Proof Explorer


Theorem clwlkclwwlklem2

Description: Lemma 2 for clwlkclwwlk . (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 11-Apr-2021)

Ref Expression
Assertion clwlkclwwlklem2 E:domE1-1RFWorddomEP:0FV2Pi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE

Proof

Step Hyp Ref Expression
1 f1fn E:domE1-1REFndomE
2 dffn3 EFndomEE:domEranE
3 1 2 sylib E:domE1-1RE:domEranE
4 lencl FWorddomEF0
5 ffn P:0FVPFn0F
6 fnfz0hash F0PFn0FP=F+1
7 4 5 6 syl2an FWorddomEP:0FVP=F+1
8 ffz0iswrd P:0FVPWordV
9 lsw PWordVlastSP=PP1
10 9 ad6antr PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFlastSP=PP1
11 fvoveq1 P=F+1PP1=PF+1-1
12 11 ad4antlr PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFPP1=PF+1-1
13 eqcom P0=PFPF=P0
14 nn0cn F0F
15 1cnd F01
16 14 15 pncand F0F+1-1=F
17 16 eqcomd F0F=F+1-1
18 17 ad4antlr PWordVFWorddomEF0P=F+12PE:domEranEF=F+1-1
19 18 fveqeq2d PWordVFWorddomEF0P=F+12PE:domEranEPF=P0PF+1-1=P0
20 19 biimpd PWordVFWorddomEF0P=F+12PE:domEranEPF=P0PF+1-1=P0
21 13 20 biimtrid PWordVFWorddomEF0P=F+12PE:domEranEP0=PFPF+1-1=P0
22 21 adantld PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFPF+1-1=P0
23 22 imp PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFPF+1-1=P0
24 10 12 23 3eqtrd PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFlastSP=P0
25 nn0z F0F
26 peano2zm FF1
27 25 26 syl F0F1
28 nn0re F0F
29 28 lem1d F0F1F
30 eluz2 FF1F1FF1F
31 27 25 29 30 syl3anbrc F0FF1
32 31 ad4antlr PWordVFWorddomEF0P=F+12PE:domEranEFF1
33 fzoss2 FF10..^F10..^F
34 ssralv 0..^F10..^Fi0..^FEFi=PiPi+1i0..^F1EFi=PiPi+1
35 32 33 34 3syl PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1i0..^F1EFi=PiPi+1
36 simpr PWordVFWorddomEF0P=F+12PE:domEranEE:domEranE
37 36 adantr PWordVFWorddomEF0P=F+12PE:domEranEi0..^F1E:domEranE
38 wrdf FWorddomEF:0..^FdomE
39 simpll F:0..^FdomEF0i0..^F1F:0..^FdomE
40 fzossrbm1 F0..^F10..^F
41 25 40 syl F00..^F10..^F
42 41 adantl F:0..^FdomEF00..^F10..^F
43 42 sselda F:0..^FdomEF0i0..^F1i0..^F
44 39 43 ffvelcdmd F:0..^FdomEF0i0..^F1FidomE
45 44 exp31 F:0..^FdomEF0i0..^F1FidomE
46 38 45 syl FWorddomEF0i0..^F1FidomE
47 46 adantl PWordVFWorddomEF0i0..^F1FidomE
48 47 imp PWordVFWorddomEF0i0..^F1FidomE
49 48 ad3antrrr PWordVFWorddomEF0P=F+12PE:domEranEi0..^F1FidomE
50 49 imp PWordVFWorddomEF0P=F+12PE:domEranEi0..^F1FidomE
51 37 50 ffvelcdmd PWordVFWorddomEF0P=F+12PE:domEranEi0..^F1EFiranE
52 eqcom EFi=PiPi+1PiPi+1=EFi
53 52 biimpi EFi=PiPi+1PiPi+1=EFi
54 53 eleq1d EFi=PiPi+1PiPi+1ranEEFiranE
55 51 54 syl5ibrcom PWordVFWorddomEF0P=F+12PE:domEranEi0..^F1EFi=PiPi+1PiPi+1ranE
56 55 ralimdva PWordVFWorddomEF0P=F+12PE:domEranEi0..^F1EFi=PiPi+1i0..^F1PiPi+1ranE
57 35 56 syldc i0..^FEFi=PiPi+1PWordVFWorddomEF0P=F+12PE:domEranEi0..^F1PiPi+1ranE
58 57 adantr i0..^FEFi=PiPi+1P0=PFPWordVFWorddomEF0P=F+12PE:domEranEi0..^F1PiPi+1ranE
59 58 impcom PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFi0..^F1PiPi+1ranE
60 breq2 P=F+12P2F+1
61 60 adantl PWordVFWorddomEF0P=F+12P2F+1
62 2re 2
63 62 a1i F02
64 1red F01
65 63 64 28 lesubaddd F021F2F+1
66 2m1e1 21=1
67 66 breq1i 21F1F
68 elnnnn0c FF01F
69 68 simplbi2 F01FF
70 67 69 biimtrid F021FF
71 65 70 sylbird F02F+1F
72 71 adantl PWordVFWorddomEF02F+1F
73 72 adantr PWordVFWorddomEF0P=F+12F+1F
74 61 73 sylbid PWordVFWorddomEF0P=F+12PF
75 74 imp PWordVFWorddomEF0P=F+12PF
76 75 adantr PWordVFWorddomEF0P=F+12PE:domEranEF
77 lbfzo0 00..^FF
78 76 77 sylibr PWordVFWorddomEF0P=F+12PE:domEranE00..^F
79 fzoend 00..^FF10..^F
80 78 79 syl PWordVFWorddomEF0P=F+12PE:domEranEF10..^F
81 2fveq3 i=F1EFi=EFF1
82 fveq2 i=F1Pi=PF1
83 fvoveq1 i=F1Pi+1=PF-1+1
84 82 83 preq12d i=F1PiPi+1=PF1PF-1+1
85 81 84 eqeq12d i=F1EFi=PiPi+1EFF1=PF1PF-1+1
86 85 adantl PWordVFWorddomEF0P=F+12PE:domEranEi=F1EFi=PiPi+1EFF1=PF1PF-1+1
87 80 86 rspcdv PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1EFF1=PF1PF-1+1
88 14 15 npcand F0F-1+1=F
89 88 ad4antlr PWordVFWorddomEF0P=F+12PE:domEranEF-1+1=F
90 89 fveq2d PWordVFWorddomEF0P=F+12PE:domEranEPF-1+1=PF
91 90 preq2d PWordVFWorddomEF0P=F+12PE:domEranEPF1PF-1+1=PF1PF
92 91 eqeq2d PWordVFWorddomEF0P=F+12PE:domEranEEFF1=PF1PF-1+1EFF1=PF1PF
93 38 ad4antlr PWordVFWorddomEF0P=F+12PF:0..^FdomE
94 71 com12 2F+1F0F
95 60 94 syl6bi P=F+12PF0F
96 95 com3r F0P=F+12PF
97 96 adantl PWordVFWorddomEF0P=F+12PF
98 97 imp31 PWordVFWorddomEF0P=F+12PF
99 98 77 sylibr PWordVFWorddomEF0P=F+12P00..^F
100 99 79 syl PWordVFWorddomEF0P=F+12PF10..^F
101 93 100 ffvelcdmd PWordVFWorddomEF0P=F+12PFF1domE
102 101 adantr PWordVFWorddomEF0P=F+12PE:domEranEFF1domE
103 36 102 ffvelcdmd PWordVFWorddomEF0P=F+12PE:domEranEEFF1ranE
104 eqcom EFF1=PF1PFPF1PF=EFF1
105 104 biimpi EFF1=PF1PFPF1PF=EFF1
106 105 eleq1d EFF1=PF1PFPF1PFranEEFF1ranE
107 103 106 syl5ibrcom PWordVFWorddomEF0P=F+12PE:domEranEEFF1=PF1PFPF1PFranE
108 92 107 sylbid PWordVFWorddomEF0P=F+12PE:domEranEEFF1=PF1PF-1+1PF1PFranE
109 87 108 syldc i0..^FEFi=PiPi+1PWordVFWorddomEF0P=F+12PE:domEranEPF1PFranE
110 109 adantr i0..^FEFi=PiPi+1P0=PFPWordVFWorddomEF0P=F+12PE:domEranEPF1PFranE
111 110 impcom PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFPF1PFranE
112 preq2 P0=PFPF1P0=PF1PF
113 112 eleq1d P0=PFPF1P0ranEPF1PFranE
114 113 adantl i0..^FEFi=PiPi+1P0=PFPF1P0ranEPF1PFranE
115 114 adantl PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFPF1P0ranEPF1PFranE
116 111 115 mpbird PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFPF1P0ranE
117 24 59 116 3jca PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
118 117 exp41 PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
119 118 exp41 PWordVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
120 8 119 syl P:0FVFWorddomEF0P=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
121 120 com13 F0FWorddomEP:0FVP=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
122 4 121 mpcom FWorddomEP:0FVP=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
123 122 imp FWorddomEP:0FVP=F+12PE:domEranEi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
124 7 123 mpd FWorddomEP:0FV2PE:domEranEi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
125 124 expcom P:0FVFWorddomE2PE:domEranEi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
126 125 com14 E:domEranEFWorddomE2PP:0FVi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
127 126 imp E:domEranEFWorddomE2PP:0FVi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
128 127 impcomd E:domEranEFWorddomEP:0FV2Pi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
129 3 128 sylan E:domE1-1RFWorddomEP:0FV2Pi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE
130 129 3imp E:domE1-1RFWorddomEP:0FV2Pi0..^FEFi=PiPi+1P0=PFlastSP=P0i0..^F1PiPi+1ranEPF1P0ranE