Metamath Proof Explorer


Theorem cvmlift3lem2

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B=C
cvmlift3.y Y=K
cvmlift3.f φFCCovMapJ
cvmlift3.k φKSConn
cvmlift3.l φKN-Locally PConn
cvmlift3.o φOY
cvmlift3.g φGKCnJ
cvmlift3.p φPB
cvmlift3.e φFP=GO
Assertion cvmlift3lem2 φXY∃!zBfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z

Proof

Step Hyp Ref Expression
1 cvmlift3.b B=C
2 cvmlift3.y Y=K
3 cvmlift3.f φFCCovMapJ
4 cvmlift3.k φKSConn
5 cvmlift3.l φKN-Locally PConn
6 cvmlift3.o φOY
7 cvmlift3.g φGKCnJ
8 cvmlift3.p φPB
9 cvmlift3.e φFP=GO
10 4 adantr φXYKSConn
11 sconnpconn KSConnKPConn
12 10 11 syl φXYKPConn
13 6 adantr φXYOY
14 simpr φXYXY
15 2 pconncn KPConnOYXYaIICnKa0=Oa1=X
16 12 13 14 15 syl3anc φXYaIICnKa0=Oa1=X
17 eqid ιgIICnC|Fg=Gag0=P=ιgIICnC|Fg=Gag0=P
18 3 ad2antrr φXYaIICnKa0=Oa1=XFCCovMapJ
19 simprl φXYaIICnKa0=Oa1=XaIICnK
20 7 ad2antrr φXYaIICnKa0=Oa1=XGKCnJ
21 cnco aIICnKGKCnJGaIICnJ
22 19 20 21 syl2anc φXYaIICnKa0=Oa1=XGaIICnJ
23 8 ad2antrr φXYaIICnKa0=Oa1=XPB
24 simprrl φXYaIICnKa0=Oa1=Xa0=O
25 24 fveq2d φXYaIICnKa0=Oa1=XGa0=GO
26 iiuni 01=II
27 26 2 cnf aIICnKa:01Y
28 19 27 syl φXYaIICnKa0=Oa1=Xa:01Y
29 0elunit 001
30 fvco3 a:01Y001Ga0=Ga0
31 28 29 30 sylancl φXYaIICnKa0=Oa1=XGa0=Ga0
32 9 ad2antrr φXYaIICnKa0=Oa1=XFP=GO
33 25 31 32 3eqtr4rd φXYaIICnKa0=Oa1=XFP=Ga0
34 1 17 18 22 23 33 cvmliftiota φXYaIICnKa0=Oa1=XιgIICnC|Fg=Gag0=PIICnCFιgIICnC|Fg=Gag0=P=GaιgIICnC|Fg=Gag0=P0=P
35 34 simp1d φXYaIICnKa0=Oa1=XιgIICnC|Fg=Gag0=PIICnC
36 26 1 cnf ιgIICnC|Fg=Gag0=PIICnCιgIICnC|Fg=Gag0=P:01B
37 35 36 syl φXYaIICnKa0=Oa1=XιgIICnC|Fg=Gag0=P:01B
38 1elunit 101
39 ffvelcdm ιgIICnC|Fg=Gag0=P:01B101ιgIICnC|Fg=Gag0=P1B
40 37 38 39 sylancl φXYaIICnKa0=Oa1=XιgIICnC|Fg=Gag0=P1B
41 simprrr φXYaIICnKa0=Oa1=Xa1=X
42 eqidd φXYaIICnKa0=Oa1=XιgIICnC|Fg=Gag0=P1=ιgIICnC|Fg=Gag0=P1
43 fveq1 f=af0=a0
44 43 eqeq1d f=af0=Oa0=O
45 fveq1 f=af1=a1
46 45 eqeq1d f=af1=Xa1=X
47 coeq2 f=aGf=Ga
48 47 eqeq2d f=aFg=GfFg=Ga
49 48 anbi1d f=aFg=Gfg0=PFg=Gag0=P
50 49 riotabidv f=aιgIICnC|Fg=Gfg0=P=ιgIICnC|Fg=Gag0=P
51 50 fveq1d f=aιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=Gag0=P1
52 51 eqeq1d f=aιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=Gag0=P1ιgIICnC|Fg=Gag0=P1=ιgIICnC|Fg=Gag0=P1
53 44 46 52 3anbi123d f=af0=Of1=XιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=Gag0=P1a0=Oa1=XιgIICnC|Fg=Gag0=P1=ιgIICnC|Fg=Gag0=P1
54 53 rspcev aIICnKa0=Oa1=XιgIICnC|Fg=Gag0=P1=ιgIICnC|Fg=Gag0=P1fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=Gag0=P1
55 19 24 41 42 54 syl13anc φXYaIICnKa0=Oa1=XfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=Gag0=P1
56 3 ad4antr φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wFCCovMapJ
57 4 ad4antr φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wKSConn
58 5 ad4antr φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wKN-Locally PConn
59 6 ad4antr φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wOY
60 7 ad4antr φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wGKCnJ
61 8 ad4antr φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wPB
62 9 ad4antr φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wFP=GO
63 19 ad2antrr φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=waIICnK
64 24 ad2antrr φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wa0=O
65 simprl φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=whIICnK
66 simprr1 φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wh0=O
67 41 ad2antrr φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wa1=X
68 simprr2 φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wh1=X
69 67 68 eqtr4d φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wa1=h1
70 1 2 56 57 58 59 60 61 62 63 64 65 66 69 cvmlift3lem1 φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wιgIICnC|Fg=Gag0=P1=ιgIICnC|Fg=Ghg0=P1
71 simprr3 φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wιgIICnC|Fg=Ghg0=P1=w
72 70 71 eqtrd φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wιgIICnC|Fg=Gag0=P1=w
73 72 rexlimdvaa φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wιgIICnC|Fg=Gag0=P1=w
74 73 ralrimiva φXYaIICnKa0=Oa1=XwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wιgIICnC|Fg=Gag0=P1=w
75 eqeq2 z=ιgIICnC|Fg=Gag0=P1ιgIICnC|Fg=Gfg0=P1=zιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=Gag0=P1
76 75 3anbi3d z=ιgIICnC|Fg=Gag0=P1f0=Of1=XιgIICnC|Fg=Gfg0=P1=zf0=Of1=XιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=Gag0=P1
77 76 rexbidv z=ιgIICnC|Fg=Gag0=P1fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=zfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=Gag0=P1
78 eqeq1 z=ιgIICnC|Fg=Gag0=P1z=wιgIICnC|Fg=Gag0=P1=w
79 78 imbi2d z=ιgIICnC|Fg=Gag0=P1hIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wz=whIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wιgIICnC|Fg=Gag0=P1=w
80 79 ralbidv z=ιgIICnC|Fg=Gag0=P1wBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wz=wwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wιgIICnC|Fg=Gag0=P1=w
81 77 80 anbi12d z=ιgIICnC|Fg=Gag0=P1fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=zwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wz=wfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=Gag0=P1wBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wιgIICnC|Fg=Gag0=P1=w
82 81 rspcev ιgIICnC|Fg=Gag0=P1BfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=Gag0=P1wBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wιgIICnC|Fg=Gag0=P1=wzBfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=zwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wz=w
83 40 55 74 82 syl12anc φXYaIICnKa0=Oa1=XzBfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=zwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wz=w
84 fveq1 f=hf0=h0
85 84 eqeq1d f=hf0=Oh0=O
86 fveq1 f=hf1=h1
87 86 eqeq1d f=hf1=Xh1=X
88 coeq2 f=hGf=Gh
89 88 eqeq2d f=hFg=GfFg=Gh
90 89 anbi1d f=hFg=Gfg0=PFg=Ghg0=P
91 90 riotabidv f=hιgIICnC|Fg=Gfg0=P=ιgIICnC|Fg=Ghg0=P
92 91 fveq1d f=hιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=Ghg0=P1
93 92 eqeq1d f=hιgIICnC|Fg=Gfg0=P1=zιgIICnC|Fg=Ghg0=P1=z
94 85 87 93 3anbi123d f=hf0=Of1=XιgIICnC|Fg=Gfg0=P1=zh0=Oh1=XιgIICnC|Fg=Ghg0=P1=z
95 94 cbvrexvw fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=zhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=z
96 eqeq2 z=wιgIICnC|Fg=Ghg0=P1=zιgIICnC|Fg=Ghg0=P1=w
97 96 3anbi3d z=wh0=Oh1=XιgIICnC|Fg=Ghg0=P1=zh0=Oh1=XιgIICnC|Fg=Ghg0=P1=w
98 97 rexbidv z=whIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=zhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=w
99 95 98 bitrid z=wfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=zhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=w
100 99 reu8 ∃!zBfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=zzBfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=zwBhIICnKh0=Oh1=XιgIICnC|Fg=Ghg0=P1=wz=w
101 83 100 sylibr φXYaIICnKa0=Oa1=X∃!zBfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z
102 101 rexlimdvaa φXYaIICnKa0=Oa1=X∃!zBfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z
103 16 102 mpd φXY∃!zBfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z