| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b |  | 
						
							| 2 |  | cvmlift3.y |  | 
						
							| 3 |  | cvmlift3.f |  | 
						
							| 4 |  | cvmlift3.k |  | 
						
							| 5 |  | cvmlift3.l |  | 
						
							| 6 |  | cvmlift3.o |  | 
						
							| 7 |  | cvmlift3.g |  | 
						
							| 8 |  | cvmlift3.p |  | 
						
							| 9 |  | cvmlift3.e |  | 
						
							| 10 | 4 | adantr |  | 
						
							| 11 |  | sconnpconn |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 6 | adantr |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 2 | pconncn |  | 
						
							| 16 | 12 13 14 15 | syl3anc |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 3 | ad2antrr |  | 
						
							| 19 |  | simprl |  | 
						
							| 20 | 7 | ad2antrr |  | 
						
							| 21 |  | cnco |  | 
						
							| 22 | 19 20 21 | syl2anc |  | 
						
							| 23 | 8 | ad2antrr |  | 
						
							| 24 |  | simprrl |  | 
						
							| 25 | 24 | fveq2d |  | 
						
							| 26 |  | iiuni |  | 
						
							| 27 | 26 2 | cnf |  | 
						
							| 28 | 19 27 | syl |  | 
						
							| 29 |  | 0elunit |  | 
						
							| 30 |  | fvco3 |  | 
						
							| 31 | 28 29 30 | sylancl |  | 
						
							| 32 | 9 | ad2antrr |  | 
						
							| 33 | 25 31 32 | 3eqtr4rd |  | 
						
							| 34 | 1 17 18 22 23 33 | cvmliftiota |  | 
						
							| 35 | 34 | simp1d |  | 
						
							| 36 | 26 1 | cnf |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 |  | 1elunit |  | 
						
							| 39 |  | ffvelcdm |  | 
						
							| 40 | 37 38 39 | sylancl |  | 
						
							| 41 |  | simprrr |  | 
						
							| 42 |  | eqidd |  | 
						
							| 43 |  | fveq1 |  | 
						
							| 44 | 43 | eqeq1d |  | 
						
							| 45 |  | fveq1 |  | 
						
							| 46 | 45 | eqeq1d |  | 
						
							| 47 |  | coeq2 |  | 
						
							| 48 | 47 | eqeq2d |  | 
						
							| 49 | 48 | anbi1d |  | 
						
							| 50 | 49 | riotabidv |  | 
						
							| 51 | 50 | fveq1d |  | 
						
							| 52 | 51 | eqeq1d |  | 
						
							| 53 | 44 46 52 | 3anbi123d |  | 
						
							| 54 | 53 | rspcev |  | 
						
							| 55 | 19 24 41 42 54 | syl13anc |  | 
						
							| 56 | 3 | ad4antr |  | 
						
							| 57 | 4 | ad4antr |  | 
						
							| 58 | 5 | ad4antr |  | 
						
							| 59 | 6 | ad4antr |  | 
						
							| 60 | 7 | ad4antr |  | 
						
							| 61 | 8 | ad4antr |  | 
						
							| 62 | 9 | ad4antr |  | 
						
							| 63 | 19 | ad2antrr |  | 
						
							| 64 | 24 | ad2antrr |  | 
						
							| 65 |  | simprl |  | 
						
							| 66 |  | simprr1 |  | 
						
							| 67 | 41 | ad2antrr |  | 
						
							| 68 |  | simprr2 |  | 
						
							| 69 | 67 68 | eqtr4d |  | 
						
							| 70 | 1 2 56 57 58 59 60 61 62 63 64 65 66 69 | cvmlift3lem1 |  | 
						
							| 71 |  | simprr3 |  | 
						
							| 72 | 70 71 | eqtrd |  | 
						
							| 73 | 72 | rexlimdvaa |  | 
						
							| 74 | 73 | ralrimiva |  | 
						
							| 75 |  | eqeq2 |  | 
						
							| 76 | 75 | 3anbi3d |  | 
						
							| 77 | 76 | rexbidv |  | 
						
							| 78 |  | eqeq1 |  | 
						
							| 79 | 78 | imbi2d |  | 
						
							| 80 | 79 | ralbidv |  | 
						
							| 81 | 77 80 | anbi12d |  | 
						
							| 82 | 81 | rspcev |  | 
						
							| 83 | 40 55 74 82 | syl12anc |  | 
						
							| 84 |  | fveq1 |  | 
						
							| 85 | 84 | eqeq1d |  | 
						
							| 86 |  | fveq1 |  | 
						
							| 87 | 86 | eqeq1d |  | 
						
							| 88 |  | coeq2 |  | 
						
							| 89 | 88 | eqeq2d |  | 
						
							| 90 | 89 | anbi1d |  | 
						
							| 91 | 90 | riotabidv |  | 
						
							| 92 | 91 | fveq1d |  | 
						
							| 93 | 92 | eqeq1d |  | 
						
							| 94 | 85 87 93 | 3anbi123d |  | 
						
							| 95 | 94 | cbvrexvw |  | 
						
							| 96 |  | eqeq2 |  | 
						
							| 97 | 96 | 3anbi3d |  | 
						
							| 98 | 97 | rexbidv |  | 
						
							| 99 | 95 98 | bitrid |  | 
						
							| 100 | 99 | reu8 |  | 
						
							| 101 | 83 100 | sylibr |  | 
						
							| 102 | 101 | rexlimdvaa |  | 
						
							| 103 | 16 102 | mpd |  |