| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftlem.1 |
|
| 2 |
|
cvmliftlem.b |
|
| 3 |
|
cvmliftlem.x |
|
| 4 |
|
cvmliftlem.f |
|
| 5 |
|
cvmliftlem.g |
|
| 6 |
|
cvmliftlem.p |
|
| 7 |
|
cvmliftlem.e |
|
| 8 |
|
cvmliftlem.n |
|
| 9 |
|
cvmliftlem.t |
|
| 10 |
|
cvmliftlem.a |
|
| 11 |
|
cvmliftlem.l |
|
| 12 |
|
cvmliftlem.q |
|
| 13 |
|
elfznn |
|
| 14 |
|
eqid |
|
| 15 |
1 2 3 4 5 6 7 8 9 10 11 12 14
|
cvmliftlem5 |
|
| 16 |
13 15
|
sylan2 |
|
| 17 |
|
simpr |
|
| 18 |
17
|
fveq2d |
|
| 19 |
18
|
fveq2d |
|
| 20 |
13
|
adantl |
|
| 21 |
20
|
nnred |
|
| 22 |
|
peano2rem |
|
| 23 |
21 22
|
syl |
|
| 24 |
8
|
adantr |
|
| 25 |
23 24
|
nndivred |
|
| 26 |
25
|
rexrd |
|
| 27 |
21 24
|
nndivred |
|
| 28 |
27
|
rexrd |
|
| 29 |
21
|
ltm1d |
|
| 30 |
24
|
nnred |
|
| 31 |
24
|
nngt0d |
|
| 32 |
|
ltdiv1 |
|
| 33 |
23 21 30 31 32
|
syl112anc |
|
| 34 |
29 33
|
mpbid |
|
| 35 |
25 27 34
|
ltled |
|
| 36 |
|
lbicc2 |
|
| 37 |
26 28 35 36
|
syl3anc |
|
| 38 |
|
fvexd |
|
| 39 |
16 19 37 38
|
fvmptd |
|
| 40 |
4
|
adantr |
|
| 41 |
|
simpr |
|
| 42 |
1 2 3 4 5 6 7 8 9 10 11 41
|
cvmliftlem1 |
|
| 43 |
1 2 3 4 5 6 7 8 9 10 11 12 14
|
cvmliftlem7 |
|
| 44 |
|
cvmcn |
|
| 45 |
2 3
|
cnf |
|
| 46 |
40 44 45
|
3syl |
|
| 47 |
|
ffn |
|
| 48 |
|
fniniseg |
|
| 49 |
46 47 48
|
3syl |
|
| 50 |
43 49
|
mpbid |
|
| 51 |
50
|
simpld |
|
| 52 |
50
|
simprd |
|
| 53 |
1 2 3 4 5 6 7 8 9 10 11 41 14 37
|
cvmliftlem3 |
|
| 54 |
52 53
|
eqeltrd |
|
| 55 |
|
eqid |
|
| 56 |
1 2 55
|
cvmsiota |
|
| 57 |
40 42 51 54 56
|
syl13anc |
|
| 58 |
57
|
simprd |
|
| 59 |
|
fvres |
|
| 60 |
58 59
|
syl |
|
| 61 |
60 52
|
eqtrd |
|
| 62 |
57
|
simpld |
|
| 63 |
1
|
cvmsf1o |
|
| 64 |
40 42 62 63
|
syl3anc |
|
| 65 |
|
f1ocnvfv |
|
| 66 |
64 58 65
|
syl2anc |
|
| 67 |
61 66
|
mpd |
|
| 68 |
39 67
|
eqtrd |
|