Metamath Proof Explorer


Theorem cvmliftlem9

Description: Lemma for cvmlift . The Q ( M ) functions are defined on almost disjoint intervals, but they overlap at the edges. Here we show that at these points the Q functions agree on their common domain. (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmliftlem.b B = C
cvmliftlem.x X = J
cvmliftlem.f φ F C CovMap J
cvmliftlem.g φ G II Cn J
cvmliftlem.p φ P B
cvmliftlem.e φ F P = G 0
cvmliftlem.n φ N
cvmliftlem.t φ T : 1 N j J j × S j
cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
cvmliftlem.l L = topGen ran .
cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
Assertion cvmliftlem9 φ M 1 N Q M M 1 N = Q M 1 M 1 N

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmliftlem.b B = C
3 cvmliftlem.x X = J
4 cvmliftlem.f φ F C CovMap J
5 cvmliftlem.g φ G II Cn J
6 cvmliftlem.p φ P B
7 cvmliftlem.e φ F P = G 0
8 cvmliftlem.n φ N
9 cvmliftlem.t φ T : 1 N j J j × S j
10 cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
11 cvmliftlem.l L = topGen ran .
12 cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
13 elfznn M 1 N M
14 eqid M 1 N M N = M 1 N M N
15 1 2 3 4 5 6 7 8 9 10 11 12 14 cvmliftlem5 φ M Q M = z M 1 N M N F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
16 13 15 sylan2 φ M 1 N Q M = z M 1 N M N F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
17 simpr φ M 1 N z = M 1 N z = M 1 N
18 17 fveq2d φ M 1 N z = M 1 N G z = G M 1 N
19 18 fveq2d φ M 1 N z = M 1 N F ι b 2 nd T M | Q M 1 M 1 N b -1 G z = F ι b 2 nd T M | Q M 1 M 1 N b -1 G M 1 N
20 13 adantl φ M 1 N M
21 20 nnred φ M 1 N M
22 peano2rem M M 1
23 21 22 syl φ M 1 N M 1
24 8 adantr φ M 1 N N
25 23 24 nndivred φ M 1 N M 1 N
26 25 rexrd φ M 1 N M 1 N *
27 21 24 nndivred φ M 1 N M N
28 27 rexrd φ M 1 N M N *
29 21 ltm1d φ M 1 N M 1 < M
30 24 nnred φ M 1 N N
31 24 nngt0d φ M 1 N 0 < N
32 ltdiv1 M 1 M N 0 < N M 1 < M M 1 N < M N
33 23 21 30 31 32 syl112anc φ M 1 N M 1 < M M 1 N < M N
34 29 33 mpbid φ M 1 N M 1 N < M N
35 25 27 34 ltled φ M 1 N M 1 N M N
36 lbicc2 M 1 N * M N * M 1 N M N M 1 N M 1 N M N
37 26 28 35 36 syl3anc φ M 1 N M 1 N M 1 N M N
38 fvexd φ M 1 N F ι b 2 nd T M | Q M 1 M 1 N b -1 G M 1 N V
39 16 19 37 38 fvmptd φ M 1 N Q M M 1 N = F ι b 2 nd T M | Q M 1 M 1 N b -1 G M 1 N
40 4 adantr φ M 1 N F C CovMap J
41 simpr φ M 1 N M 1 N
42 1 2 3 4 5 6 7 8 9 10 11 41 cvmliftlem1 φ M 1 N 2 nd T M S 1 st T M
43 1 2 3 4 5 6 7 8 9 10 11 12 14 cvmliftlem7 φ M 1 N Q M 1 M 1 N F -1 G M 1 N
44 cvmcn F C CovMap J F C Cn J
45 2 3 cnf F C Cn J F : B X
46 40 44 45 3syl φ M 1 N F : B X
47 ffn F : B X F Fn B
48 fniniseg F Fn B Q M 1 M 1 N F -1 G M 1 N Q M 1 M 1 N B F Q M 1 M 1 N = G M 1 N
49 46 47 48 3syl φ M 1 N Q M 1 M 1 N F -1 G M 1 N Q M 1 M 1 N B F Q M 1 M 1 N = G M 1 N
50 43 49 mpbid φ M 1 N Q M 1 M 1 N B F Q M 1 M 1 N = G M 1 N
51 50 simpld φ M 1 N Q M 1 M 1 N B
52 50 simprd φ M 1 N F Q M 1 M 1 N = G M 1 N
53 1 2 3 4 5 6 7 8 9 10 11 41 14 37 cvmliftlem3 φ M 1 N G M 1 N 1 st T M
54 52 53 eqeltrd φ M 1 N F Q M 1 M 1 N 1 st T M
55 eqid ι b 2 nd T M | Q M 1 M 1 N b = ι b 2 nd T M | Q M 1 M 1 N b
56 1 2 55 cvmsiota F C CovMap J 2 nd T M S 1 st T M Q M 1 M 1 N B F Q M 1 M 1 N 1 st T M ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M Q M 1 M 1 N ι b 2 nd T M | Q M 1 M 1 N b
57 40 42 51 54 56 syl13anc φ M 1 N ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M Q M 1 M 1 N ι b 2 nd T M | Q M 1 M 1 N b
58 57 simprd φ M 1 N Q M 1 M 1 N ι b 2 nd T M | Q M 1 M 1 N b
59 fvres Q M 1 M 1 N ι b 2 nd T M | Q M 1 M 1 N b F ι b 2 nd T M | Q M 1 M 1 N b Q M 1 M 1 N = F Q M 1 M 1 N
60 58 59 syl φ M 1 N F ι b 2 nd T M | Q M 1 M 1 N b Q M 1 M 1 N = F Q M 1 M 1 N
61 60 52 eqtrd φ M 1 N F ι b 2 nd T M | Q M 1 M 1 N b Q M 1 M 1 N = G M 1 N
62 57 simpld φ M 1 N ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M
63 1 cvmsf1o F C CovMap J 2 nd T M S 1 st T M ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M F ι b 2 nd T M | Q M 1 M 1 N b : ι b 2 nd T M | Q M 1 M 1 N b 1-1 onto 1 st T M
64 40 42 62 63 syl3anc φ M 1 N F ι b 2 nd T M | Q M 1 M 1 N b : ι b 2 nd T M | Q M 1 M 1 N b 1-1 onto 1 st T M
65 f1ocnvfv F ι b 2 nd T M | Q M 1 M 1 N b : ι b 2 nd T M | Q M 1 M 1 N b 1-1 onto 1 st T M Q M 1 M 1 N ι b 2 nd T M | Q M 1 M 1 N b F ι b 2 nd T M | Q M 1 M 1 N b Q M 1 M 1 N = G M 1 N F ι b 2 nd T M | Q M 1 M 1 N b -1 G M 1 N = Q M 1 M 1 N
66 64 58 65 syl2anc φ M 1 N F ι b 2 nd T M | Q M 1 M 1 N b Q M 1 M 1 N = G M 1 N F ι b 2 nd T M | Q M 1 M 1 N b -1 G M 1 N = Q M 1 M 1 N
67 61 66 mpd φ M 1 N F ι b 2 nd T M | Q M 1 M 1 N b -1 G M 1 N = Q M 1 M 1 N
68 39 67 eqtrd φ M 1 N Q M M 1 N = Q M 1 M 1 N