Metamath Proof Explorer


Theorem cvmliftlem9

Description: Lemma for cvmlift . The Q ( M ) functions are defined on almost disjoint intervals, but they overlap at the edges. Here we show that at these points the Q functions agree on their common domain. (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
Assertion cvmliftlem9 φM1NQMM1N=QM1M1N

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
13 elfznn M1NM
14 eqid M1NMN=M1NMN
15 1 2 3 4 5 6 7 8 9 10 11 12 14 cvmliftlem5 φMQM=zM1NMNFιb2ndTM|QM1M1Nb-1Gz
16 13 15 sylan2 φM1NQM=zM1NMNFιb2ndTM|QM1M1Nb-1Gz
17 simpr φM1Nz=M1Nz=M1N
18 17 fveq2d φM1Nz=M1NGz=GM1N
19 18 fveq2d φM1Nz=M1NFιb2ndTM|QM1M1Nb-1Gz=Fιb2ndTM|QM1M1Nb-1GM1N
20 13 adantl φM1NM
21 20 nnred φM1NM
22 peano2rem MM1
23 21 22 syl φM1NM1
24 8 adantr φM1NN
25 23 24 nndivred φM1NM1N
26 25 rexrd φM1NM1N*
27 21 24 nndivred φM1NMN
28 27 rexrd φM1NMN*
29 21 ltm1d φM1NM1<M
30 24 nnred φM1NN
31 24 nngt0d φM1N0<N
32 ltdiv1 M1MN0<NM1<MM1N<MN
33 23 21 30 31 32 syl112anc φM1NM1<MM1N<MN
34 29 33 mpbid φM1NM1N<MN
35 25 27 34 ltled φM1NM1NMN
36 lbicc2 M1N*MN*M1NMNM1NM1NMN
37 26 28 35 36 syl3anc φM1NM1NM1NMN
38 fvexd φM1NFιb2ndTM|QM1M1Nb-1GM1NV
39 16 19 37 38 fvmptd φM1NQMM1N=Fιb2ndTM|QM1M1Nb-1GM1N
40 4 adantr φM1NFCCovMapJ
41 simpr φM1NM1N
42 1 2 3 4 5 6 7 8 9 10 11 41 cvmliftlem1 φM1N2ndTMS1stTM
43 1 2 3 4 5 6 7 8 9 10 11 12 14 cvmliftlem7 φM1NQM1M1NF-1GM1N
44 cvmcn FCCovMapJFCCnJ
45 2 3 cnf FCCnJF:BX
46 40 44 45 3syl φM1NF:BX
47 ffn F:BXFFnB
48 fniniseg FFnBQM1M1NF-1GM1NQM1M1NBFQM1M1N=GM1N
49 46 47 48 3syl φM1NQM1M1NF-1GM1NQM1M1NBFQM1M1N=GM1N
50 43 49 mpbid φM1NQM1M1NBFQM1M1N=GM1N
51 50 simpld φM1NQM1M1NB
52 50 simprd φM1NFQM1M1N=GM1N
53 1 2 3 4 5 6 7 8 9 10 11 41 14 37 cvmliftlem3 φM1NGM1N1stTM
54 52 53 eqeltrd φM1NFQM1M1N1stTM
55 eqid ιb2ndTM|QM1M1Nb=ιb2ndTM|QM1M1Nb
56 1 2 55 cvmsiota FCCovMapJ2ndTMS1stTMQM1M1NBFQM1M1N1stTMιb2ndTM|QM1M1Nb2ndTMQM1M1Nιb2ndTM|QM1M1Nb
57 40 42 51 54 56 syl13anc φM1Nιb2ndTM|QM1M1Nb2ndTMQM1M1Nιb2ndTM|QM1M1Nb
58 57 simprd φM1NQM1M1Nιb2ndTM|QM1M1Nb
59 fvres QM1M1Nιb2ndTM|QM1M1NbFιb2ndTM|QM1M1NbQM1M1N=FQM1M1N
60 58 59 syl φM1NFιb2ndTM|QM1M1NbQM1M1N=FQM1M1N
61 60 52 eqtrd φM1NFιb2ndTM|QM1M1NbQM1M1N=GM1N
62 57 simpld φM1Nιb2ndTM|QM1M1Nb2ndTM
63 1 cvmsf1o FCCovMapJ2ndTMS1stTMιb2ndTM|QM1M1Nb2ndTMFιb2ndTM|QM1M1Nb:ιb2ndTM|QM1M1Nb1-1 onto1stTM
64 40 42 62 63 syl3anc φM1NFιb2ndTM|QM1M1Nb:ιb2ndTM|QM1M1Nb1-1 onto1stTM
65 f1ocnvfv Fιb2ndTM|QM1M1Nb:ιb2ndTM|QM1M1Nb1-1 onto1stTMQM1M1Nιb2ndTM|QM1M1NbFιb2ndTM|QM1M1NbQM1M1N=GM1NFιb2ndTM|QM1M1Nb-1GM1N=QM1M1N
66 64 58 65 syl2anc φM1NFιb2ndTM|QM1M1NbQM1M1N=GM1NFιb2ndTM|QM1M1Nb-1GM1N=QM1M1N
67 61 66 mpd φM1NFιb2ndTM|QM1M1Nb-1GM1N=QM1M1N
68 39 67 eqtrd φM1NQMM1N=QM1M1N