| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cyc3evpm.t |
|
| 2 |
|
cyc3evpm.a |
|
| 3 |
|
simpr |
|
| 4 |
|
simpl |
|
| 5 |
|
eqid |
|
| 6 |
|
simpr |
|
| 7 |
6
|
elin1d |
|
| 8 |
|
elrabi |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
id |
|
| 11 |
|
dmeq |
|
| 12 |
|
eqidd |
|
| 13 |
10 11 12
|
f1eq123d |
|
| 14 |
13
|
elrab |
|
| 15 |
14
|
simprbi |
|
| 16 |
7 15
|
syl |
|
| 17 |
|
eqid |
|
| 18 |
5 4 9 16 17
|
cycpmcl |
|
| 19 |
|
c0ex |
|
| 20 |
19
|
tpid1 |
|
| 21 |
|
fzo0to3tp |
|
| 22 |
20 21
|
eleqtrri |
|
| 23 |
6
|
elin2d |
|
| 24 |
|
hashf |
|
| 25 |
|
ffn |
|
| 26 |
|
elpreima |
|
| 27 |
24 25 26
|
mp2b |
|
| 28 |
27
|
simprbi |
|
| 29 |
|
elsni |
|
| 30 |
23 28 29
|
3syl |
|
| 31 |
30
|
oveq2d |
|
| 32 |
22 31
|
eleqtrrid |
|
| 33 |
|
wrdsymbcl |
|
| 34 |
9 32 33
|
syl2anc |
|
| 35 |
|
1ex |
|
| 36 |
35
|
tpid2 |
|
| 37 |
36 21
|
eleqtrri |
|
| 38 |
37 31
|
eleqtrrid |
|
| 39 |
|
wrdsymbcl |
|
| 40 |
9 38 39
|
syl2anc |
|
| 41 |
|
2ex |
|
| 42 |
41
|
tpid3 |
|
| 43 |
42 21
|
eleqtrri |
|
| 44 |
43 31
|
eleqtrrid |
|
| 45 |
|
wrdsymbcl |
|
| 46 |
9 44 45
|
syl2anc |
|
| 47 |
34 40 46
|
3jca |
|
| 48 |
|
eqidd |
|
| 49 |
|
eqidd |
|
| 50 |
|
eqidd |
|
| 51 |
48 49 50
|
3jca |
|
| 52 |
|
eqwrds3 |
|
| 53 |
52
|
biimpar |
|
| 54 |
9 47 30 51 53
|
syl22anc |
|
| 55 |
54
|
fveq2d |
|
| 56 |
|
wrddm |
|
| 57 |
9 56
|
syl |
|
| 58 |
57 31
|
eqtrd |
|
| 59 |
58 21
|
eqtrdi |
|
| 60 |
|
f1eq2 |
|
| 61 |
60
|
biimpa |
|
| 62 |
59 16 61
|
syl2anc |
|
| 63 |
19 35 41
|
3pm3.2i |
|
| 64 |
|
0ne1 |
|
| 65 |
|
0ne2 |
|
| 66 |
|
1ne2 |
|
| 67 |
64 65 66
|
3pm3.2i |
|
| 68 |
|
eqid |
|
| 69 |
68
|
f13dfv |
|
| 70 |
63 67 69
|
mp2an |
|
| 71 |
70
|
simprbi |
|
| 72 |
62 71
|
syl |
|
| 73 |
72
|
simp1d |
|
| 74 |
72
|
simp3d |
|
| 75 |
72
|
simp2d |
|
| 76 |
75
|
necomd |
|
| 77 |
|
eqid |
|
| 78 |
5 17 4 34 40 46 73 74 76 77
|
cyc3co2 |
|
| 79 |
5 4 34 46 75 17
|
cycpm2cl |
|
| 80 |
5 4 34 40 73 17
|
cycpm2cl |
|
| 81 |
|
eqid |
|
| 82 |
17 81 77
|
symgov |
|
| 83 |
79 80 82
|
syl2anc |
|
| 84 |
55 78 83
|
3eqtrd |
|
| 85 |
84
|
fveq2d |
|
| 86 |
|
eqid |
|
| 87 |
17 86 81
|
psgnco |
|
| 88 |
4 79 80 87
|
syl3anc |
|
| 89 |
|
eqid |
|
| 90 |
5 4 34 46 75 89
|
cycpm2tr |
|
| 91 |
34 46
|
prssd |
|
| 92 |
|
enpr2 |
|
| 93 |
34 46 75 92
|
syl3anc |
|
| 94 |
|
eqid |
|
| 95 |
89 94
|
pmtrrn |
|
| 96 |
4 91 93 95
|
syl3anc |
|
| 97 |
90 96
|
eqeltrd |
|
| 98 |
17 94 86
|
psgnpmtr |
|
| 99 |
97 98
|
syl |
|
| 100 |
5 4 34 40 73 89
|
cycpm2tr |
|
| 101 |
34 40
|
prssd |
|
| 102 |
|
enpr2 |
|
| 103 |
34 40 73 102
|
syl3anc |
|
| 104 |
89 94
|
pmtrrn |
|
| 105 |
4 101 103 104
|
syl3anc |
|
| 106 |
100 105
|
eqeltrd |
|
| 107 |
17 94 86
|
psgnpmtr |
|
| 108 |
106 107
|
syl |
|
| 109 |
99 108
|
oveq12d |
|
| 110 |
|
neg1mulneg1e1 |
|
| 111 |
109 110
|
eqtrdi |
|
| 112 |
85 88 111
|
3eqtrd |
|
| 113 |
17 81 86
|
psgnevpmb |
|
| 114 |
113
|
biimpar |
|
| 115 |
4 18 112 114
|
syl12anc |
|
| 116 |
115 2
|
eleqtrrdi |
|
| 117 |
116
|
ad4ant13 |
|
| 118 |
3 117
|
eqeltrrd |
|
| 119 |
|
nfcv |
|
| 120 |
5 17 81
|
tocycf |
|
| 121 |
120
|
ffnd |
|
| 122 |
121
|
adantr |
|
| 123 |
|
simpr |
|
| 124 |
123 1
|
eleqtrdi |
|
| 125 |
119 122 124
|
fvelimad |
|
| 126 |
118 125
|
r19.29a |
|
| 127 |
126
|
ex |
|
| 128 |
127
|
ssrdv |
|