Metamath Proof Explorer


Theorem deg1mhm

Description: Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses deg1mhm.d D=deg1R
deg1mhm.b B=BaseP
deg1mhm.p P=Poly1R
deg1mhm.z 0˙=0P
deg1mhm.y Y=mulGrpP𝑠B0˙
deg1mhm.n N=fld𝑠0
Assertion deg1mhm RDomnDB0˙YMndHomN

Proof

Step Hyp Ref Expression
1 deg1mhm.d D=deg1R
2 deg1mhm.b B=BaseP
3 deg1mhm.p P=Poly1R
4 deg1mhm.z 0˙=0P
5 deg1mhm.y Y=mulGrpP𝑠B0˙
6 deg1mhm.n N=fld𝑠0
7 3 ply1domn RDomnPDomn
8 eqid mulGrpP=mulGrpP
9 2 4 8 isdomn3 PDomnPRingB0˙SubMndmulGrpP
10 9 simprbi PDomnB0˙SubMndmulGrpP
11 7 10 syl RDomnB0˙SubMndmulGrpP
12 5 submmnd B0˙SubMndmulGrpPYMnd
13 11 12 syl RDomnYMnd
14 nn0subm 0SubMndfld
15 6 submmnd 0SubMndfldNMnd
16 14 15 mp1i RDomnNMnd
17 13 16 jca RDomnYMndNMnd
18 1 3 2 deg1xrf D:B*
19 ffn D:B*DFnB
20 18 19 ax-mp DFnB
21 difss B0˙B
22 fnssres DFnBB0˙BDB0˙FnB0˙
23 20 21 22 mp2an DB0˙FnB0˙
24 23 a1i RDomnDB0˙FnB0˙
25 fvres xB0˙DB0˙x=Dx
26 25 adantl RDomnxB0˙DB0˙x=Dx
27 domnring RDomnRRing
28 27 adantr RDomnxB0˙RRing
29 eldifi xB0˙xB
30 29 adantl RDomnxB0˙xB
31 eldifsni xB0˙x0˙
32 31 adantl RDomnxB0˙x0˙
33 1 3 4 2 deg1nn0cl RRingxBx0˙Dx0
34 28 30 32 33 syl3anc RDomnxB0˙Dx0
35 26 34 eqeltrd RDomnxB0˙DB0˙x0
36 35 ralrimiva RDomnxB0˙DB0˙x0
37 ffnfv DB0˙:B0˙0DB0˙FnB0˙xB0˙DB0˙x0
38 24 36 37 sylanbrc RDomnDB0˙:B0˙0
39 eqid RLRegR=RLRegR
40 eqid P=P
41 27 adantr RDomnxB0˙yB0˙RRing
42 29 ad2antrl RDomnxB0˙yB0˙xB
43 31 ad2antrl RDomnxB0˙yB0˙x0˙
44 simpl RDomnxB0˙yB0˙RDomn
45 eqid coe1x=coe1x
46 1 3 4 2 39 45 deg1ldgdomn RDomnxBx0˙coe1xDxRLRegR
47 44 42 43 46 syl3anc RDomnxB0˙yB0˙coe1xDxRLRegR
48 eldifi yB0˙yB
49 48 ad2antll RDomnxB0˙yB0˙yB
50 eldifsni yB0˙y0˙
51 50 ad2antll RDomnxB0˙yB0˙y0˙
52 1 3 39 2 40 4 41 42 43 47 49 51 deg1mul2 RDomnxB0˙yB0˙DxPy=Dx+Dy
53 domnring PDomnPRing
54 7 53 syl RDomnPRing
55 54 adantr RDomnxB0˙yB0˙PRing
56 2 40 ringcl PRingxByBxPyB
57 55 42 49 56 syl3anc RDomnxB0˙yB0˙xPyB
58 7 adantr RDomnxB0˙yB0˙PDomn
59 2 40 4 domnmuln0 PDomnxBx0˙yBy0˙xPy0˙
60 58 42 43 49 51 59 syl122anc RDomnxB0˙yB0˙xPy0˙
61 eldifsn xPyB0˙xPyBxPy0˙
62 57 60 61 sylanbrc RDomnxB0˙yB0˙xPyB0˙
63 fvres xPyB0˙DB0˙xPy=DxPy
64 62 63 syl RDomnxB0˙yB0˙DB0˙xPy=DxPy
65 fvres yB0˙DB0˙y=Dy
66 25 65 oveqan12d xB0˙yB0˙DB0˙x+DB0˙y=Dx+Dy
67 66 adantl RDomnxB0˙yB0˙DB0˙x+DB0˙y=Dx+Dy
68 52 64 67 3eqtr4d RDomnxB0˙yB0˙DB0˙xPy=DB0˙x+DB0˙y
69 68 ralrimivva RDomnxB0˙yB0˙DB0˙xPy=DB0˙x+DB0˙y
70 eqid 1P=1P
71 2 70 ringidcl PRing1PB
72 54 71 syl RDomn1PB
73 domnnzr PDomnPNzRing
74 70 4 nzrnz PNzRing1P0˙
75 7 73 74 3syl RDomn1P0˙
76 eldifsn 1PB0˙1PB1P0˙
77 72 75 76 sylanbrc RDomn1PB0˙
78 fvres 1PB0˙DB0˙1P=D1P
79 77 78 syl RDomnDB0˙1P=D1P
80 8 70 ringidval 1P=0mulGrpP
81 5 80 subm0 B0˙SubMndmulGrpP1P=0Y
82 11 81 syl RDomn1P=0Y
83 82 fveq2d RDomnDB0˙1P=DB0˙0Y
84 domnnzr RDomnRNzRing
85 eqid Monic1pR=Monic1pR
86 3 70 85 1 mon1pid RNzRing1PMonic1pRD1P=0
87 86 simprd RNzRingD1P=0
88 84 87 syl RDomnD1P=0
89 79 83 88 3eqtr3d RDomnDB0˙0Y=0
90 38 69 89 3jca RDomnDB0˙:B0˙0xB0˙yB0˙DB0˙xPy=DB0˙x+DB0˙yDB0˙0Y=0
91 8 2 mgpbas B=BasemulGrpP
92 5 91 ressbas2 B0˙BB0˙=BaseY
93 21 92 ax-mp B0˙=BaseY
94 nn0sscn 0
95 cnfldbas =Basefld
96 6 95 ressbas2 00=BaseN
97 94 96 ax-mp 0=BaseN
98 2 fvexi BV
99 difexg BVB0˙V
100 98 99 ax-mp B0˙V
101 8 40 mgpplusg P=+mulGrpP
102 5 101 ressplusg B0˙VP=+Y
103 100 102 ax-mp P=+Y
104 nn0ex 0V
105 cnfldadd +=+fld
106 6 105 ressplusg 0V+=+N
107 104 106 ax-mp +=+N
108 eqid 0Y=0Y
109 cnfld0 0=0fld
110 6 109 subm0 0SubMndfld0=0N
111 14 110 ax-mp 0=0N
112 93 97 103 107 108 111 ismhm DB0˙YMndHomNYMndNMndDB0˙:B0˙0xB0˙yB0˙DB0˙xPy=DB0˙x+DB0˙yDB0˙0Y=0
113 17 90 112 sylanbrc RDomnDB0˙YMndHomN