| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
|
| 2 |
|
simpl |
|
| 3 |
|
bren |
|
| 4 |
2 3
|
sylib |
|
| 5 |
|
deranglem |
|
| 6 |
5
|
adantl |
|
| 7 |
|
f1oco |
|
| 8 |
7
|
ad2ant2lr |
|
| 9 |
|
f1ocnv |
|
| 10 |
9
|
ad2antlr |
|
| 11 |
|
f1oco |
|
| 12 |
8 10 11
|
syl2anc |
|
| 13 |
|
coass |
|
| 14 |
13
|
fveq1i |
|
| 15 |
|
simprl |
|
| 16 |
|
f1oco |
|
| 17 |
15 10 16
|
syl2anc |
|
| 18 |
|
f1of |
|
| 19 |
17 18
|
syl |
|
| 20 |
|
fvco3 |
|
| 21 |
19 20
|
sylan |
|
| 22 |
14 21
|
eqtrid |
|
| 23 |
|
f1of |
|
| 24 |
10 23
|
syl |
|
| 25 |
|
fvco3 |
|
| 26 |
24 25
|
sylan |
|
| 27 |
24
|
ffvelcdmda |
|
| 28 |
|
simplrr |
|
| 29 |
|
fveq2 |
|
| 30 |
|
id |
|
| 31 |
29 30
|
neeq12d |
|
| 32 |
31
|
rspcv |
|
| 33 |
27 28 32
|
sylc |
|
| 34 |
26 33
|
eqnetrd |
|
| 35 |
34
|
necomd |
|
| 36 |
|
simpllr |
|
| 37 |
19
|
ffvelcdmda |
|
| 38 |
|
f1ocnvfv |
|
| 39 |
36 37 38
|
syl2anc |
|
| 40 |
39
|
necon3d |
|
| 41 |
35 40
|
mpd |
|
| 42 |
22 41
|
eqnetrd |
|
| 43 |
42
|
ralrimiva |
|
| 44 |
|
fveq2 |
|
| 45 |
|
id |
|
| 46 |
44 45
|
neeq12d |
|
| 47 |
46
|
cbvralvw |
|
| 48 |
43 47
|
sylib |
|
| 49 |
12 48
|
jca |
|
| 50 |
49
|
ex |
|
| 51 |
|
vex |
|
| 52 |
|
f1oeq1 |
|
| 53 |
|
fveq1 |
|
| 54 |
53
|
neeq1d |
|
| 55 |
54
|
ralbidv |
|
| 56 |
52 55
|
anbi12d |
|
| 57 |
51 56
|
elab |
|
| 58 |
|
vex |
|
| 59 |
58 51
|
coex |
|
| 60 |
58
|
cnvex |
|
| 61 |
59 60
|
coex |
|
| 62 |
|
f1oeq1 |
|
| 63 |
|
fveq1 |
|
| 64 |
63
|
neeq1d |
|
| 65 |
64
|
ralbidv |
|
| 66 |
62 65
|
anbi12d |
|
| 67 |
61 66
|
elab |
|
| 68 |
50 57 67
|
3imtr4g |
|
| 69 |
|
vex |
|
| 70 |
|
f1oeq1 |
|
| 71 |
|
fveq1 |
|
| 72 |
71
|
neeq1d |
|
| 73 |
72
|
ralbidv |
|
| 74 |
70 73
|
anbi12d |
|
| 75 |
69 74
|
elab |
|
| 76 |
57 75
|
anbi12i |
|
| 77 |
9
|
ad2antlr |
|
| 78 |
|
f1ofo |
|
| 79 |
77 78
|
syl |
|
| 80 |
8
|
adantrr |
|
| 81 |
|
f1ofn |
|
| 82 |
80 81
|
syl |
|
| 83 |
|
simplr |
|
| 84 |
|
simprrl |
|
| 85 |
|
f1oco |
|
| 86 |
83 84 85
|
syl2anc |
|
| 87 |
|
f1ofn |
|
| 88 |
86 87
|
syl |
|
| 89 |
|
cocan2 |
|
| 90 |
79 82 88 89
|
syl3anc |
|
| 91 |
|
f1of1 |
|
| 92 |
91
|
ad2antlr |
|
| 93 |
|
simprll |
|
| 94 |
|
f1of |
|
| 95 |
93 94
|
syl |
|
| 96 |
|
f1of |
|
| 97 |
84 96
|
syl |
|
| 98 |
|
cocan1 |
|
| 99 |
92 95 97 98
|
syl3anc |
|
| 100 |
90 99
|
bitrd |
|
| 101 |
100
|
ex |
|
| 102 |
76 101
|
biimtrid |
|
| 103 |
68 102
|
dom2d |
|
| 104 |
103
|
ex |
|
| 105 |
104
|
exlimdv |
|
| 106 |
4 6 105
|
mp2d |
|
| 107 |
|
enfii |
|
| 108 |
107
|
ancoms |
|
| 109 |
|
deranglem |
|
| 110 |
108 109
|
syl |
|
| 111 |
|
hashdom |
|
| 112 |
110 6 111
|
syl2anc |
|
| 113 |
106 112
|
mpbird |
|
| 114 |
1
|
derangval |
|
| 115 |
108 114
|
syl |
|
| 116 |
1
|
derangval |
|
| 117 |
116
|
adantl |
|
| 118 |
113 115 117
|
3brtr4d |
|