Metamath Proof Explorer


Theorem digexp

Description: The K th digit of a power to the base is either 1 or 0. (Contributed by AV, 24-May-2020)

Ref Expression
Assertion digexp B2K0N0KdigitBBN=ifK=N10

Proof

Step Hyp Ref Expression
1 eluzelcn B2B
2 eluz2nn B2B
3 2 nnne0d B2B0
4 1 3 jca B2BB0
5 4 3ad2ant1 B2K0N0BB0
6 nn0z K0K
7 nn0z N0N
8 6 7 anim12i K0N0KN
9 8 ancomd K0N0NK
10 9 3adant1 B2K0N0NK
11 expsub BB0NKBNK=BNBK
12 5 10 11 syl2anc B2K0N0BNK=BNBK
13 12 eqcomd B2K0N0BNBK=BNK
14 13 fveq2d B2K0N0BNBK=BNK
15 14 oveq1d B2K0N0BNBKmodB=BNKmodB
16 2 3ad2ant1 B2K0N0B
17 simp2 B2K0N0K0
18 eluzelre B2B
19 reexpcl BN0BN
20 18 19 sylan B2N0BN
21 18 adantr B2N0B
22 simpr B2N0N0
23 eluzge2nn0 B2B0
24 23 nn0ge0d B20B
25 24 adantr B2N00B
26 21 22 25 expge0d B2N00BN
27 20 26 jca B2N0BN0BN
28 27 3adant2 B2K0N0BN0BN
29 elrege0 BN0+∞BN0BN
30 28 29 sylibr B2K0N0BN0+∞
31 nn0digval BK0BN0+∞KdigitBBN=BNBKmodB
32 16 17 30 31 syl3anc B2K0N0KdigitBBN=BNBKmodB
33 simpr B2K0N0K=NK=N
34 33 eqcomd B2K0N0K=NN=K
35 nn0cn N0N
36 35 3ad2ant3 B2K0N0N
37 nn0cn K0K
38 37 3ad2ant2 B2K0N0K
39 36 38 subeq0ad B2K0N0NK=0N=K
40 39 adantr B2K0N0K=NNK=0N=K
41 34 40 mpbird B2K0N0K=NNK=0
42 41 oveq2d B2K0N0K=NBNK=B0
43 1 exp0d B2B0=1
44 43 3ad2ant1 B2K0N0B0=1
45 44 adantr B2K0N0K=NB0=1
46 42 45 eqtrd B2K0N0K=NBNK=1
47 46 fveq2d B2K0N0K=NBNK=1
48 1zzd B2K0N0K=N1
49 flid 11=1
50 48 49 syl B2K0N0K=N1=1
51 47 50 eqtrd B2K0N0K=NBNK=1
52 51 oveq1d B2K0N0K=NBNKmodB=1modB
53 eluz2gt1 B21<B
54 1mod B1<B1modB=1
55 18 53 54 syl2anc B21modB=1
56 55 3ad2ant1 B2K0N01modB=1
57 56 adantr B2K0N0K=N1modB=1
58 52 57 eqtr2d B2K0N0K=N1=BNKmodB
59 simprl1 N<KB2K0N0¬K=NB2
60 7 adantl K0N0N
61 6 adantr K0N0K
62 60 61 zsubcld K0N0NK
63 62 3adant1 B2K0N0NK
64 63 ad2antrl N<KB2K0N0¬K=NNK
65 nn0re N0N
66 65 3ad2ant3 B2K0N0N
67 nn0re K0K
68 67 3ad2ant2 B2K0N0K
69 66 68 sublt0d B2K0N0NK<0N<K
70 69 biimprd B2K0N0N<KNK<0
71 70 adantr B2K0N0¬K=NN<KNK<0
72 71 impcom N<KB2K0N0¬K=NNK<0
73 expnegico01 B2NKNK<0BNK01
74 59 64 72 73 syl3anc N<KB2K0N0¬K=NBNK01
75 ico01fl0 BNK01BNK=0
76 74 75 syl N<KB2K0N0¬K=NBNK=0
77 76 oveq1d N<KB2K0N0¬K=NBNKmodB=0modB
78 2 nnrpd B2B+
79 0mod B+0modB=0
80 78 79 syl B20modB=0
81 80 3ad2ant1 B2K0N00modB=0
82 81 ad2antrl N<KB2K0N0¬K=N0modB=0
83 77 82 eqtrd N<KB2K0N0¬K=NBNKmodB=0
84 eluzelz B2B
85 84 3ad2ant1 B2K0N0B
86 85 ad2antrl ¬N<KB2K0N0¬K=NB
87 67 65 anim12i K0N0KN
88 lenlt KNKN¬N<K
89 88 bicomd KN¬N<KKN
90 87 89 syl K0N0¬N<KKN
91 90 biimpd K0N0¬N<KKN
92 91 3adant1 B2K0N0¬N<KKN
93 92 adantr B2K0N0¬K=N¬N<KKN
94 93 impcom ¬N<KB2K0N0¬K=NKN
95 3simpc B2K0N0K0N0
96 95 ad2antrl ¬N<KB2K0N0¬K=NK0N0
97 nn0sub K0N0KNNK0
98 96 97 syl ¬N<KB2K0N0¬K=NKNNK0
99 94 98 mpbid ¬N<KB2K0N0¬K=NNK0
100 zexpcl BNK0BNK
101 86 99 100 syl2anc ¬N<KB2K0N0¬K=NBNK
102 flid BNKBNK=BNK
103 101 102 syl ¬N<KB2K0N0¬K=NBNK=BNK
104 103 oveq1d ¬N<KB2K0N0¬K=NBNKmodB=BNKmodB
105 1 3ad2ant1 B2K0N0B
106 3 3ad2ant1 B2K0N0B0
107 105 106 63 expm1d B2K0N0BN-K-1=BNKB
108 107 eqcomd B2K0N0BNKB=BN-K-1
109 108 ad2antrl ¬N<KB2K0N0¬K=NBNKB=BN-K-1
110 pm4.56 ¬K=N¬N<K¬K=NN<K
111 87 3adant1 B2K0N0KN
112 axlttri KNK<N¬K=NN<K
113 111 112 syl B2K0N0K<N¬K=NN<K
114 113 biimprd B2K0N0¬K=NN<KK<N
115 110 114 biimtrid B2K0N0¬K=N¬N<KK<N
116 115 expdimp B2K0N0¬K=N¬N<KK<N
117 116 impcom ¬N<KB2K0N0¬K=NK<N
118 8 3adant1 B2K0N0KN
119 118 ad2antrl ¬N<KB2K0N0¬K=NKN
120 znnsub KNK<NNK
121 119 120 syl ¬N<KB2K0N0¬K=NK<NNK
122 117 121 mpbid ¬N<KB2K0N0¬K=NNK
123 nnm1nn0 NKN-K-10
124 122 123 syl ¬N<KB2K0N0¬K=NN-K-10
125 zexpcl BN-K-10BN-K-1
126 86 124 125 syl2anc ¬N<KB2K0N0¬K=NBN-K-1
127 109 126 eqeltrd ¬N<KB2K0N0¬K=NBNKB
128 18 3ad2ant1 B2K0N0B
129 128 106 63 reexpclzd B2K0N0BNK
130 78 3ad2ant1 B2K0N0B+
131 mod0 BNKB+BNKmodB=0BNKB
132 129 130 131 syl2anc B2K0N0BNKmodB=0BNKB
133 132 ad2antrl ¬N<KB2K0N0¬K=NBNKmodB=0BNKB
134 127 133 mpbird ¬N<KB2K0N0¬K=NBNKmodB=0
135 104 134 eqtrd ¬N<KB2K0N0¬K=NBNKmodB=0
136 83 135 pm2.61ian B2K0N0¬K=NBNKmodB=0
137 136 eqcomd B2K0N0¬K=N0=BNKmodB
138 58 137 ifeqda B2K0N0ifK=N10=BNKmodB
139 15 32 138 3eqtr4d B2K0N0KdigitBBN=ifK=N10