Metamath Proof Explorer


Theorem dignn0flhalflem2

Description: Lemma 2 for dignn0flhalf . (Contributed by AV, 7-Jun-2012)

Ref Expression
Assertion dignn0flhalflem2 AA12N0A2N+1=A22N

Proof

Step Hyp Ref Expression
1 zre AA
2 1 rehalfcld AA2
3 2 flcld AA2
4 3 zred AA2
5 4 3ad2ant1 AA12N0A2
6 2re 2
7 6 a1i N02
8 id N0N0
9 7 8 reexpcld N02N
10 9 3ad2ant3 AA12N02N
11 2cnd AA12N02
12 2ne0 20
13 12 a1i AA12N020
14 nn0z N0N
15 14 3ad2ant3 AA12N0N
16 11 13 15 expne0d AA12N02N0
17 5 10 16 redivcld AA12N0A22N
18 17 flcld AA12N0A22N
19 1 3ad2ant1 AA12N0A
20 6 a1i AA12N02
21 simp3 AA12N0N0
22 1nn0 10
23 22 a1i AA12N010
24 21 23 nn0addcld AA12N0N+10
25 20 24 reexpcld AA12N02N+1
26 15 peano2zd AA12N0N+1
27 11 13 26 expne0d AA12N02N+10
28 19 25 27 redivcld AA12N0A2N+1
29 28 flcld AA12N0A2N+1
30 nn0p1nn N0N+1
31 dignn0flhalflem1 AA12N+1A2N+11<A12N+1
32 30 31 syl3an3 AA12N0A2N+11<A12N+1
33 1zzd AA12N01
34 flsubz A2N+11A2N+11=A2N+11
35 28 33 34 syl2anc AA12N0A2N+11=A2N+11
36 35 eqcomd AA12N0A2N+11=A2N+11
37 nnz A12A12
38 zob AA+12A12
39 37 38 imbitrrid AA12A+12
40 39 imp AA12A+12
41 zofldiv2 AA+12A2=A12
42 40 41 syldan AA12A2=A12
43 42 3adant3 AA12N0A2=A12
44 43 fvoveq1d AA12N0A22N=A122N
45 zcn AA
46 1cnd A1
47 45 46 subcld AA1
48 2rp 2+
49 48 a1i A122+
50 49 rpcnne0d A12220
51 48 a1i N02+
52 51 14 rpexpcld N02N+
53 52 rpcnne0d N02N2N0
54 divdiv1 A12202N2N0A122N=A122N
55 47 50 53 54 syl3an AA12N0A122N=A122N
56 10 recnd AA12N02N
57 11 56 mulcomd AA12N022N=2N2
58 11 21 expp1d AA12N02N+1=2N2
59 57 58 eqtr4d AA12N022N=2N+1
60 59 oveq2d AA12N0A122N=A12N+1
61 55 60 eqtrd AA12N0A122N=A12N+1
62 61 fveq2d AA12N0A122N=A12N+1
63 44 62 eqtrd AA12N0A22N=A12N+1
64 32 36 63 3brtr4d AA12N0A2N+11<A22N
65 19 rehalfcld AA12N0A2
66 65 10 16 redivcld AA12N0A22N
67 reflcl A2A2
68 65 67 syl AA12N0A2
69 48 a1i AA12N02+
70 69 15 rpexpcld AA12N02N+
71 flle A2A2A2
72 65 71 syl AA12N0A2A2
73 68 65 70 72 lediv1dd AA12N0A22NA22N
74 flwordi A22NA22NA22NA22NA22NA22N
75 17 66 73 74 syl3anc AA12N0A22NA22N
76 divdiv1 A2202N2N0A22N=A22N
77 45 50 53 76 syl3an AA12N0A22N=A22N
78 52 rpcnd N02N
79 78 3ad2ant3 AA12N02N
80 11 79 mulcomd AA12N022N=2N2
81 11 13 15 expp1zd AA12N02N+1=2N2
82 80 81 eqtr4d AA12N022N=2N+1
83 82 oveq2d AA12N0A22N=A2N+1
84 77 83 eqtrd AA12N0A22N=A2N+1
85 84 eqcomd AA12N0A2N+1=A22N
86 85 fveq2d AA12N0A2N+1=A22N
87 75 86 breqtrrd AA12N0A22NA2N+1
88 zgtp1leeq A22NA2N+1A2N+11<A22NA22NA2N+1A22N=A2N+1
89 88 imp A22NA2N+1A2N+11<A22NA22NA2N+1A22N=A2N+1
90 18 29 64 87 89 syl22anc AA12N0A22N=A2N+1
91 90 eqcomd AA12N0A2N+1=A22N