Metamath Proof Explorer


Theorem dignn0flhalflem2

Description: Lemma 2 for dignn0flhalf . (Contributed by AV, 7-Jun-2012)

Ref Expression
Assertion dignn0flhalflem2 A A 1 2 N 0 A 2 N + 1 = A 2 2 N

Proof

Step Hyp Ref Expression
1 zre A A
2 1 rehalfcld A A 2
3 2 flcld A A 2
4 3 zred A A 2
5 4 3ad2ant1 A A 1 2 N 0 A 2
6 2re 2
7 6 a1i N 0 2
8 id N 0 N 0
9 7 8 reexpcld N 0 2 N
10 9 3ad2ant3 A A 1 2 N 0 2 N
11 2cnd A A 1 2 N 0 2
12 2ne0 2 0
13 12 a1i A A 1 2 N 0 2 0
14 nn0z N 0 N
15 14 3ad2ant3 A A 1 2 N 0 N
16 11 13 15 expne0d A A 1 2 N 0 2 N 0
17 5 10 16 redivcld A A 1 2 N 0 A 2 2 N
18 17 flcld A A 1 2 N 0 A 2 2 N
19 1 3ad2ant1 A A 1 2 N 0 A
20 6 a1i A A 1 2 N 0 2
21 simp3 A A 1 2 N 0 N 0
22 1nn0 1 0
23 22 a1i A A 1 2 N 0 1 0
24 21 23 nn0addcld A A 1 2 N 0 N + 1 0
25 20 24 reexpcld A A 1 2 N 0 2 N + 1
26 15 peano2zd A A 1 2 N 0 N + 1
27 11 13 26 expne0d A A 1 2 N 0 2 N + 1 0
28 19 25 27 redivcld A A 1 2 N 0 A 2 N + 1
29 28 flcld A A 1 2 N 0 A 2 N + 1
30 nn0p1nn N 0 N + 1
31 dignn0flhalflem1 A A 1 2 N + 1 A 2 N + 1 1 < A 1 2 N + 1
32 30 31 syl3an3 A A 1 2 N 0 A 2 N + 1 1 < A 1 2 N + 1
33 1zzd A A 1 2 N 0 1
34 flsubz A 2 N + 1 1 A 2 N + 1 1 = A 2 N + 1 1
35 28 33 34 syl2anc A A 1 2 N 0 A 2 N + 1 1 = A 2 N + 1 1
36 35 eqcomd A A 1 2 N 0 A 2 N + 1 1 = A 2 N + 1 1
37 nnz A 1 2 A 1 2
38 zob A A + 1 2 A 1 2
39 37 38 syl5ibr A A 1 2 A + 1 2
40 39 imp A A 1 2 A + 1 2
41 zofldiv2 A A + 1 2 A 2 = A 1 2
42 40 41 syldan A A 1 2 A 2 = A 1 2
43 42 3adant3 A A 1 2 N 0 A 2 = A 1 2
44 43 fvoveq1d A A 1 2 N 0 A 2 2 N = A 1 2 2 N
45 zcn A A
46 1cnd A 1
47 45 46 subcld A A 1
48 2rp 2 +
49 48 a1i A 1 2 2 +
50 49 rpcnne0d A 1 2 2 2 0
51 48 a1i N 0 2 +
52 51 14 rpexpcld N 0 2 N +
53 52 rpcnne0d N 0 2 N 2 N 0
54 divdiv1 A 1 2 2 0 2 N 2 N 0 A 1 2 2 N = A 1 2 2 N
55 47 50 53 54 syl3an A A 1 2 N 0 A 1 2 2 N = A 1 2 2 N
56 10 recnd A A 1 2 N 0 2 N
57 11 56 mulcomd A A 1 2 N 0 2 2 N = 2 N 2
58 11 21 expp1d A A 1 2 N 0 2 N + 1 = 2 N 2
59 57 58 eqtr4d A A 1 2 N 0 2 2 N = 2 N + 1
60 59 oveq2d A A 1 2 N 0 A 1 2 2 N = A 1 2 N + 1
61 55 60 eqtrd A A 1 2 N 0 A 1 2 2 N = A 1 2 N + 1
62 61 fveq2d A A 1 2 N 0 A 1 2 2 N = A 1 2 N + 1
63 44 62 eqtrd A A 1 2 N 0 A 2 2 N = A 1 2 N + 1
64 32 36 63 3brtr4d A A 1 2 N 0 A 2 N + 1 1 < A 2 2 N
65 19 rehalfcld A A 1 2 N 0 A 2
66 65 10 16 redivcld A A 1 2 N 0 A 2 2 N
67 reflcl A 2 A 2
68 65 67 syl A A 1 2 N 0 A 2
69 48 a1i A A 1 2 N 0 2 +
70 69 15 rpexpcld A A 1 2 N 0 2 N +
71 flle A 2 A 2 A 2
72 65 71 syl A A 1 2 N 0 A 2 A 2
73 68 65 70 72 lediv1dd A A 1 2 N 0 A 2 2 N A 2 2 N
74 flwordi A 2 2 N A 2 2 N A 2 2 N A 2 2 N A 2 2 N A 2 2 N
75 17 66 73 74 syl3anc A A 1 2 N 0 A 2 2 N A 2 2 N
76 divdiv1 A 2 2 0 2 N 2 N 0 A 2 2 N = A 2 2 N
77 45 50 53 76 syl3an A A 1 2 N 0 A 2 2 N = A 2 2 N
78 52 rpcnd N 0 2 N
79 78 3ad2ant3 A A 1 2 N 0 2 N
80 11 79 mulcomd A A 1 2 N 0 2 2 N = 2 N 2
81 11 13 15 expp1zd A A 1 2 N 0 2 N + 1 = 2 N 2
82 80 81 eqtr4d A A 1 2 N 0 2 2 N = 2 N + 1
83 82 oveq2d A A 1 2 N 0 A 2 2 N = A 2 N + 1
84 77 83 eqtrd A A 1 2 N 0 A 2 2 N = A 2 N + 1
85 84 eqcomd A A 1 2 N 0 A 2 N + 1 = A 2 2 N
86 85 fveq2d A A 1 2 N 0 A 2 N + 1 = A 2 2 N
87 75 86 breqtrrd A A 1 2 N 0 A 2 2 N A 2 N + 1
88 zgtp1leeq A 2 2 N A 2 N + 1 A 2 N + 1 1 < A 2 2 N A 2 2 N A 2 N + 1 A 2 2 N = A 2 N + 1
89 88 imp A 2 2 N A 2 N + 1 A 2 N + 1 1 < A 2 2 N A 2 2 N A 2 N + 1 A 2 2 N = A 2 N + 1
90 18 29 64 87 89 syl22anc A A 1 2 N 0 A 2 2 N = A 2 N + 1
91 90 eqcomd A A 1 2 N 0 A 2 N + 1 = A 2 2 N