Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
Nonnegative integer as sum of its shifted digits
dignn0flhalflem2
Next ⟩
dignn0ehalf
Metamath Proof Explorer
Ascii
Unicode
Theorem
dignn0flhalflem2
Description:
Lemma 2 for
dignn0flhalf
.
(Contributed by
AV
, 7-Jun-2012)
Ref
Expression
Assertion
dignn0flhalflem2
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
N
+
1
=
A
2
2
N
Proof
Step
Hyp
Ref
Expression
1
zre
⊢
A
∈
ℤ
→
A
∈
ℝ
2
1
rehalfcld
⊢
A
∈
ℤ
→
A
2
∈
ℝ
3
2
flcld
⊢
A
∈
ℤ
→
A
2
∈
ℤ
4
3
zred
⊢
A
∈
ℤ
→
A
2
∈
ℝ
5
4
3ad2ant1
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
∈
ℝ
6
2re
⊢
2
∈
ℝ
7
6
a1i
⊢
N
∈
ℕ
0
→
2
∈
ℝ
8
id
⊢
N
∈
ℕ
0
→
N
∈
ℕ
0
9
7
8
reexpcld
⊢
N
∈
ℕ
0
→
2
N
∈
ℝ
10
9
3ad2ant3
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
N
∈
ℝ
11
2cnd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
∈
ℂ
12
2ne0
⊢
2
≠
0
13
12
a1i
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
≠
0
14
nn0z
⊢
N
∈
ℕ
0
→
N
∈
ℤ
15
14
3ad2ant3
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
N
∈
ℤ
16
11
13
15
expne0d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
N
≠
0
17
5
10
16
redivcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
∈
ℝ
18
17
flcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
∈
ℤ
19
1
3ad2ant1
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
∈
ℝ
20
6
a1i
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
∈
ℝ
21
simp3
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
N
∈
ℕ
0
22
1nn0
⊢
1
∈
ℕ
0
23
22
a1i
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
1
∈
ℕ
0
24
21
23
nn0addcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
N
+
1
∈
ℕ
0
25
20
24
reexpcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
N
+
1
∈
ℝ
26
15
peano2zd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
N
+
1
∈
ℤ
27
11
13
26
expne0d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
N
+
1
≠
0
28
19
25
27
redivcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
N
+
1
∈
ℝ
29
28
flcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
N
+
1
∈
ℤ
30
nn0p1nn
⊢
N
∈
ℕ
0
→
N
+
1
∈
ℕ
31
dignn0flhalflem1
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
+
1
∈
ℕ
→
A
2
N
+
1
−
1
<
A
−
1
2
N
+
1
32
30
31
syl3an3
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
N
+
1
−
1
<
A
−
1
2
N
+
1
33
1zzd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
1
∈
ℤ
34
flsubz
⊢
A
2
N
+
1
∈
ℝ
∧
1
∈
ℤ
→
A
2
N
+
1
−
1
=
A
2
N
+
1
−
1
35
28
33
34
syl2anc
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
N
+
1
−
1
=
A
2
N
+
1
−
1
36
35
eqcomd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
N
+
1
−
1
=
A
2
N
+
1
−
1
37
nnz
⊢
A
−
1
2
∈
ℕ
→
A
−
1
2
∈
ℤ
38
zob
⊢
A
∈
ℤ
→
A
+
1
2
∈
ℤ
↔
A
−
1
2
∈
ℤ
39
37
38
imbitrrid
⊢
A
∈
ℤ
→
A
−
1
2
∈
ℕ
→
A
+
1
2
∈
ℤ
40
39
imp
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
→
A
+
1
2
∈
ℤ
41
zofldiv2
⊢
A
∈
ℤ
∧
A
+
1
2
∈
ℤ
→
A
2
=
A
−
1
2
42
40
41
syldan
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
→
A
2
=
A
−
1
2
43
42
3adant3
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
=
A
−
1
2
44
43
fvoveq1d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
=
A
−
1
2
2
N
45
zcn
⊢
A
∈
ℤ
→
A
∈
ℂ
46
1cnd
⊢
A
∈
ℤ
→
1
∈
ℂ
47
45
46
subcld
⊢
A
∈
ℤ
→
A
−
1
∈
ℂ
48
2rp
⊢
2
∈
ℝ
+
49
48
a1i
⊢
A
−
1
2
∈
ℕ
→
2
∈
ℝ
+
50
49
rpcnne0d
⊢
A
−
1
2
∈
ℕ
→
2
∈
ℂ
∧
2
≠
0
51
48
a1i
⊢
N
∈
ℕ
0
→
2
∈
ℝ
+
52
51
14
rpexpcld
⊢
N
∈
ℕ
0
→
2
N
∈
ℝ
+
53
52
rpcnne0d
⊢
N
∈
ℕ
0
→
2
N
∈
ℂ
∧
2
N
≠
0
54
divdiv1
⊢
A
−
1
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
∧
2
N
∈
ℂ
∧
2
N
≠
0
→
A
−
1
2
2
N
=
A
−
1
2
2
N
55
47
50
53
54
syl3an
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
−
1
2
2
N
=
A
−
1
2
2
N
56
10
recnd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
N
∈
ℂ
57
11
56
mulcomd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
2
N
=
2
N
⋅
2
58
11
21
expp1d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
N
+
1
=
2
N
⋅
2
59
57
58
eqtr4d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
2
N
=
2
N
+
1
60
59
oveq2d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
−
1
2
2
N
=
A
−
1
2
N
+
1
61
55
60
eqtrd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
−
1
2
2
N
=
A
−
1
2
N
+
1
62
61
fveq2d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
−
1
2
2
N
=
A
−
1
2
N
+
1
63
44
62
eqtrd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
=
A
−
1
2
N
+
1
64
32
36
63
3brtr4d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
N
+
1
−
1
<
A
2
2
N
65
19
rehalfcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
∈
ℝ
66
65
10
16
redivcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
∈
ℝ
67
reflcl
⊢
A
2
∈
ℝ
→
A
2
∈
ℝ
68
65
67
syl
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
∈
ℝ
69
48
a1i
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
∈
ℝ
+
70
69
15
rpexpcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
N
∈
ℝ
+
71
flle
⊢
A
2
∈
ℝ
→
A
2
≤
A
2
72
65
71
syl
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
≤
A
2
73
68
65
70
72
lediv1dd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
≤
A
2
2
N
74
flwordi
⊢
A
2
2
N
∈
ℝ
∧
A
2
2
N
∈
ℝ
∧
A
2
2
N
≤
A
2
2
N
→
A
2
2
N
≤
A
2
2
N
75
17
66
73
74
syl3anc
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
≤
A
2
2
N
76
divdiv1
⊢
A
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
∧
2
N
∈
ℂ
∧
2
N
≠
0
→
A
2
2
N
=
A
2
2
N
77
45
50
53
76
syl3an
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
=
A
2
2
N
78
52
rpcnd
⊢
N
∈
ℕ
0
→
2
N
∈
ℂ
79
78
3ad2ant3
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
N
∈
ℂ
80
11
79
mulcomd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
2
N
=
2
N
⋅
2
81
11
13
15
expp1zd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
N
+
1
=
2
N
⋅
2
82
80
81
eqtr4d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
2
2
N
=
2
N
+
1
83
82
oveq2d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
=
A
2
N
+
1
84
77
83
eqtrd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
=
A
2
N
+
1
85
84
eqcomd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
N
+
1
=
A
2
2
N
86
85
fveq2d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
N
+
1
=
A
2
2
N
87
75
86
breqtrrd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
≤
A
2
N
+
1
88
zgtp1leeq
⊢
A
2
2
N
∈
ℤ
∧
A
2
N
+
1
∈
ℤ
→
A
2
N
+
1
−
1
<
A
2
2
N
∧
A
2
2
N
≤
A
2
N
+
1
→
A
2
2
N
=
A
2
N
+
1
89
88
imp
⊢
A
2
2
N
∈
ℤ
∧
A
2
N
+
1
∈
ℤ
∧
A
2
N
+
1
−
1
<
A
2
2
N
∧
A
2
2
N
≤
A
2
N
+
1
→
A
2
2
N
=
A
2
N
+
1
90
18
29
64
87
89
syl22anc
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
2
N
=
A
2
N
+
1
91
90
eqcomd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
0
→
A
2
N
+
1
=
A
2
2
N