Metamath Proof Explorer


Theorem dih1dimatlem0

Description: Lemma for dih1dimat . (Contributed by NM, 11-Apr-2014)

Ref Expression
Hypotheses dih1dimat.h H=LHypK
dih1dimat.u U=DVecHKW
dih1dimat.i I=DIsoHKW
dih1dimat.a A=LSAtomsU
dih1dimat.b B=BaseK
dih1dimat.l ˙=K
dih1dimat.c C=AtomsK
dih1dimat.p P=ocKW
dih1dimat.t T=LTrnKW
dih1dimat.r R=trLKW
dih1dimat.e E=TEndoKW
dih1dimat.o O=hTIB
dih1dimat.d F=ScalarU
dih1dimat.j J=invrF
dih1dimat.v V=BaseU
dih1dimat.m ·˙=U
dih1dimat.s S=LSubSpU
dih1dimat.n N=LSpanU
dih1dimat.z 0˙=0U
dih1dimat.g G=ιhT|hP=JsfP
Assertion dih1dimatlem0 KHLWHfTsEsOi=pGpEiTpEtEi=tfp=ts

Proof

Step Hyp Ref Expression
1 dih1dimat.h H=LHypK
2 dih1dimat.u U=DVecHKW
3 dih1dimat.i I=DIsoHKW
4 dih1dimat.a A=LSAtomsU
5 dih1dimat.b B=BaseK
6 dih1dimat.l ˙=K
7 dih1dimat.c C=AtomsK
8 dih1dimat.p P=ocKW
9 dih1dimat.t T=LTrnKW
10 dih1dimat.r R=trLKW
11 dih1dimat.e E=TEndoKW
12 dih1dimat.o O=hTIB
13 dih1dimat.d F=ScalarU
14 dih1dimat.j J=invrF
15 dih1dimat.v V=BaseU
16 dih1dimat.m ·˙=U
17 dih1dimat.s S=LSubSpU
18 dih1dimat.n N=LSpanU
19 dih1dimat.z 0˙=0U
20 dih1dimat.g G=ιhT|hP=JsfP
21 simprl KHLWHfTsEsOi=pGpEi=pG
22 simpl1 KHLWHfTsEsOi=pGpEKHLWH
23 simprr KHLWHfTsEsOi=pGpEpE
24 6 7 1 8 lhpocnel2 KHLWHPC¬P˙W
25 22 24 syl KHLWHfTsEsOi=pGpEPC¬P˙W
26 simpl2r KHLWHfTsEsOi=pGpEsE
27 simpl3 KHLWHfTsEsOi=pGpEsO
28 5 1 9 11 12 2 13 14 tendoinvcl KHLWHsEsOJsEJsO
29 28 simpld KHLWHsEsOJsE
30 22 26 27 29 syl3anc KHLWHfTsEsOi=pGpEJsE
31 simpl2l KHLWHfTsEsOi=pGpEfT
32 1 9 11 tendocl KHLWHJsEfTJsfT
33 22 30 31 32 syl3anc KHLWHfTsEsOi=pGpEJsfT
34 6 7 1 9 ltrnel KHLWHJsfTPC¬P˙WJsfPC¬JsfP˙W
35 22 33 25 34 syl3anc KHLWHfTsEsOi=pGpEJsfPC¬JsfP˙W
36 6 7 1 9 20 ltrniotacl KHLWHPC¬P˙WJsfPC¬JsfP˙WGT
37 22 25 35 36 syl3anc KHLWHfTsEsOi=pGpEGT
38 1 9 11 tendocl KHLWHpEGTpGT
39 22 23 37 38 syl3anc KHLWHfTsEsOi=pGpEpGT
40 21 39 eqeltrd KHLWHfTsEsOi=pGpEiT
41 1 11 tendococl KHLWHpEJsEpJsE
42 22 23 30 41 syl3anc KHLWHfTsEsOi=pGpEpJsE
43 simp1 KHLWHfTsEsOKHLWH
44 24 3ad2ant1 KHLWHfTsEsOPC¬P˙W
45 29 3adant2l KHLWHfTsEsOJsE
46 simp2l KHLWHfTsEsOfT
47 43 45 46 32 syl3anc KHLWHfTsEsOJsfT
48 43 47 44 34 syl3anc KHLWHfTsEsOJsfPC¬JsfP˙W
49 43 44 48 36 syl3anc KHLWHfTsEsOGT
50 6 7 1 9 20 ltrniotaval KHLWHPC¬P˙WJsfPC¬JsfP˙WGP=JsfP
51 43 44 48 50 syl3anc KHLWHfTsEsOGP=JsfP
52 6 7 1 9 cdlemd KHLWHGTJsfTPC¬P˙WGP=JsfPG=Jsf
53 43 49 47 44 51 52 syl311anc KHLWHfTsEsOG=Jsf
54 53 adantr KHLWHfTsEsOi=pGpEG=Jsf
55 54 fveq2d KHLWHfTsEsOi=pGpEpG=pJsf
56 1 9 11 tendocoval KHLWHpEJsEfTpJsf=pJsf
57 22 23 30 31 56 syl121anc KHLWHfTsEsOi=pGpEpJsf=pJsf
58 55 21 57 3eqtr4d KHLWHfTsEsOi=pGpEi=pJsf
59 coass pJss=pJss
60 5 1 9 11 12 2 13 14 tendolinv KHLWHsEsOJss=IT
61 22 26 27 60 syl3anc KHLWHfTsEsOi=pGpEJss=IT
62 61 coeq2d KHLWHfTsEsOi=pGpEpJss=pIT
63 1 9 11 tendo1mulr KHLWHpEpIT=p
64 22 23 63 syl2anc KHLWHfTsEsOi=pGpEpIT=p
65 62 64 eqtrd KHLWHfTsEsOi=pGpEpJss=p
66 59 65 eqtr2id KHLWHfTsEsOi=pGpEp=pJss
67 fveq1 t=pJstf=pJsf
68 67 eqeq2d t=pJsi=tfi=pJsf
69 coeq1 t=pJsts=pJss
70 69 eqeq2d t=pJsp=tsp=pJss
71 68 70 anbi12d t=pJsi=tfp=tsi=pJsfp=pJss
72 71 rspcev pJsEi=pJsfp=pJsstEi=tfp=ts
73 42 58 66 72 syl12anc KHLWHfTsEsOi=pGpEtEi=tfp=ts
74 40 23 73 jca31 KHLWHfTsEsOi=pGpEiTpEtEi=tfp=ts
75 simp3r KHLWHfTsEsOiTpEtEi=tfp=tsp=ts
76 75 fveq1d KHLWHfTsEsOiTpEtEi=tfp=tspJsf=tsJsf
77 simp1l1 KHLWHfTsEsOiTpEtEi=tfp=tsKHLWH
78 simp2 KHLWHfTsEsOiTpEtEi=tfp=tstE
79 simpl2r KHLWHfTsEsOiTpEsE
80 79 3ad2ant1 KHLWHfTsEsOiTpEtEi=tfp=tssE
81 1 11 tendococl KHLWHtEsEtsE
82 77 78 80 81 syl3anc KHLWHfTsEsOiTpEtEi=tfp=tstsE
83 simp1l3 KHLWHfTsEsOiTpEtEi=tfp=tssO
84 77 80 83 29 syl3anc KHLWHfTsEsOiTpEtEi=tfp=tsJsE
85 simpl2l KHLWHfTsEsOiTpEfT
86 85 3ad2ant1 KHLWHfTsEsOiTpEtEi=tfp=tsfT
87 1 9 11 tendocoval KHLWHtsEJsEfTtsJsf=tsJsf
88 77 82 84 86 87 syl121anc KHLWHfTsEsOiTpEtEi=tfp=tstsJsf=tsJsf
89 coass tsJs=tsJs
90 5 1 9 11 12 2 13 14 tendorinv KHLWHsEsOsJs=IT
91 77 80 83 90 syl3anc KHLWHfTsEsOiTpEtEi=tfp=tssJs=IT
92 91 coeq2d KHLWHfTsEsOiTpEtEi=tfp=tstsJs=tIT
93 1 9 11 tendo1mulr KHLWHtEtIT=t
94 77 78 93 syl2anc KHLWHfTsEsOiTpEtEi=tfp=tstIT=t
95 92 94 eqtrd KHLWHfTsEsOiTpEtEi=tfp=tstsJs=t
96 89 95 eqtrid KHLWHfTsEsOiTpEtEi=tfp=tstsJs=t
97 96 fveq1d KHLWHfTsEsOiTpEtEi=tfp=tstsJsf=tf
98 76 88 97 3eqtr2rd KHLWHfTsEsOiTpEtEi=tfp=tstf=pJsf
99 simp3l KHLWHfTsEsOiTpEtEi=tfp=tsi=tf
100 53 adantr KHLWHfTsEsOiTpEG=Jsf
101 100 3ad2ant1 KHLWHfTsEsOiTpEtEi=tfp=tsG=Jsf
102 101 fveq2d KHLWHfTsEsOiTpEtEi=tfp=tspG=pJsf
103 98 99 102 3eqtr4d KHLWHfTsEsOiTpEtEi=tfp=tsi=pG
104 103 rexlimdv3a KHLWHfTsEsOiTpEtEi=tfp=tsi=pG
105 104 impr KHLWHfTsEsOiTpEtEi=tfp=tsi=pG
106 simprlr KHLWHfTsEsOiTpEtEi=tfp=tspE
107 105 106 jca KHLWHfTsEsOiTpEtEi=tfp=tsi=pGpE
108 74 107 impbida KHLWHfTsEsOi=pGpEiTpEtEi=tfp=ts