Metamath Proof Explorer


Theorem dihjat1lem

Description: Subspace sum of a closed subspace and an atom. ( pmapjat1 analog.) TODO: merge into dihjat1 ? (Contributed by NM, 18-Aug-2014)

Ref Expression
Hypotheses dihjat1.h H=LHypK
dihjat1.u U=DVecHKW
dihjat1.v V=BaseU
dihjat1.p ˙=LSSumU
dihjat1.n N=LSpanU
dihjat1.i I=DIsoHKW
dihjat1.j ˙=joinHKW
dihjat1.k φKHLWH
dihjat1.x φXranI
dihjat1.o 0˙=0U
dihjat1lem.q φTV0˙
Assertion dihjat1lem φX˙NT=X˙NT

Proof

Step Hyp Ref Expression
1 dihjat1.h H=LHypK
2 dihjat1.u U=DVecHKW
3 dihjat1.v V=BaseU
4 dihjat1.p ˙=LSSumU
5 dihjat1.n N=LSpanU
6 dihjat1.i I=DIsoHKW
7 dihjat1.j ˙=joinHKW
8 dihjat1.k φKHLWH
9 dihjat1.x φXranI
10 dihjat1.o 0˙=0U
11 dihjat1lem.q φTV0˙
12 simpr φX=0˙X=0˙
13 12 oveq1d φX=0˙X˙NT=0˙˙NT
14 12 oveq1d φX=0˙X˙NT=0˙˙NT
15 eldifi TV0˙TV
16 11 15 syl φTV
17 1 2 3 5 6 dihlsprn KHLWHTVNTranI
18 8 16 17 syl2anc φNTranI
19 1 2 10 6 7 8 18 djh02 φ0˙˙NT=NT
20 1 2 8 dvhlmod φULMod
21 eqid LSubSpU=LSubSpU
22 3 21 5 lspsncl ULModTVNTLSubSpU
23 20 16 22 syl2anc φNTLSubSpU
24 21 lsssubg ULModNTLSubSpUNTSubGrpU
25 20 23 24 syl2anc φNTSubGrpU
26 10 4 lsm02 NTSubGrpU0˙˙NT=NT
27 25 26 syl φ0˙˙NT=NT
28 19 27 eqtr4d φ0˙˙NT=0˙˙NT
29 28 adantr φX=0˙0˙˙NT=0˙˙NT
30 14 29 eqtr4d φX=0˙X˙NT=0˙˙NT
31 13 30 eqtr4d φX=0˙X˙NT=X˙NT
32 20 adantr φX0˙ULMod
33 1 2 6 3 dihrnss KHLWHXranIXV
34 8 9 33 syl2anc φXV
35 3 21 lssss NTLSubSpUNTV
36 23 35 syl φNTV
37 1 6 2 3 7 djhcl KHLWHXVNTVX˙NTranI
38 8 34 36 37 syl12anc φX˙NTranI
39 1 2 6 3 dihrnss KHLWHX˙NTranIX˙NTV
40 8 38 39 syl2anc φX˙NTV
41 40 adantr φX0˙X˙NTV
42 1 2 6 21 dihrnlss KHLWHXranIXLSubSpU
43 8 9 42 syl2anc φXLSubSpU
44 21 4 lsmcl ULModXLSubSpUNTLSubSpUX˙NTLSubSpU
45 20 43 23 44 syl3anc φX˙NTLSubSpU
46 45 adantr φX0˙X˙NTLSubSpU
47 simplr φX0˙xV0˙X0˙
48 8 ad2antrr φX0˙xV0˙KHLWH
49 9 ad2antrr φX0˙xV0˙XranI
50 simpr φX0˙xV0˙xV0˙
51 11 ad2antrr φX0˙xV0˙TV0˙
52 1 2 3 10 5 6 7 48 49 50 51 djhcvat42 φX0˙xV0˙X0˙NxX˙NTyV0˙NyXNxNy˙NT
53 47 52 mpand φX0˙xV0˙NxX˙NTyV0˙NyXNxNy˙NT
54 simprrl φX0˙xV0˙yV0˙NyXNxNy˙NTNyX
55 20 ad3antrrr φX0˙xV0˙yV0˙NyXNxNy˙NTULMod
56 43 ad3antrrr φX0˙xV0˙yV0˙NyXNxNy˙NTXLSubSpU
57 eldifi yV0˙yV
58 57 ad2antrl φX0˙xV0˙yV0˙NyXNxNy˙NTyV
59 3 21 5 55 56 58 lspsnel5 φX0˙xV0˙yV0˙NyXNxNy˙NTyXNyX
60 54 59 mpbird φX0˙xV0˙yV0˙NyXNxNy˙NTyX
61 16 ad3antrrr φX0˙xV0˙yV0˙NyXNxNy˙NTTV
62 3 5 lspsnid ULModTVTNT
63 55 61 62 syl2anc φX0˙xV0˙yV0˙NyXNxNy˙NTTNT
64 simprrr φX0˙xV0˙yV0˙NyXNxNy˙NTNxNy˙NT
65 sneq z=Tz=T
66 65 fveq2d z=TNz=NT
67 66 oveq2d z=TNy˙Nz=Ny˙NT
68 67 sseq2d z=TNxNy˙NzNxNy˙NT
69 68 rspcev TNTNxNy˙NTzNTNxNy˙Nz
70 63 64 69 syl2anc φX0˙xV0˙yV0˙NyXNxNy˙NTzNTNxNy˙Nz
71 60 70 jca φX0˙xV0˙yV0˙NyXNxNy˙NTyXzNTNxNy˙Nz
72 71 ex φX0˙xV0˙yV0˙NyXNxNy˙NTyXzNTNxNy˙Nz
73 72 reximdv2 φX0˙xV0˙yV0˙NyXNxNy˙NTyXzNTNxNy˙Nz
74 53 73 syld φX0˙xV0˙NxX˙NTyXzNTNxNy˙Nz
75 74 anim2d φX0˙xV0˙xVNxX˙NTxVyXzNTNxNy˙Nz
76 1 2 6 21 dihrnlss KHLWHX˙NTranIX˙NTLSubSpU
77 8 38 76 syl2anc φX˙NTLSubSpU
78 3 21 5 20 77 lspsnel6 φxX˙NTxVNxX˙NT
79 78 ad2antrr φX0˙xV0˙xX˙NTxVNxX˙NT
80 3 21 4 5 20 43 23 lsmelval2 φxX˙NTxVyXzNTNxNy˙Nz
81 8 ad2antrr φyXzNTKHLWH
82 43 ad2antrr φyXzNTXLSubSpU
83 simplr φyXzNTyX
84 3 21 lssel XLSubSpUyXyV
85 82 83 84 syl2anc φyXzNTyV
86 23 ad2antrr φyXzNTNTLSubSpU
87 simpr φyXzNTzNT
88 3 21 lssel NTLSubSpUzNTzV
89 86 87 88 syl2anc φyXzNTzV
90 1 2 3 4 5 6 7 81 85 89 djhlsmat φyXzNTNy˙Nz=Ny˙Nz
91 90 sseq2d φyXzNTNxNy˙NzNxNy˙Nz
92 91 rexbidva φyXzNTNxNy˙NzzNTNxNy˙Nz
93 92 rexbidva φyXzNTNxNy˙NzyXzNTNxNy˙Nz
94 93 anbi2d φxVyXzNTNxNy˙NzxVyXzNTNxNy˙Nz
95 80 94 bitrd φxX˙NTxVyXzNTNxNy˙Nz
96 95 ad2antrr φX0˙xV0˙xX˙NTxVyXzNTNxNy˙Nz
97 75 79 96 3imtr4d φX0˙xV0˙xX˙NTxX˙NT
98 10 21 32 41 46 97 lssssr φX0˙X˙NTX˙NT
99 1 2 3 4 7 8 34 36 djhsumss φX˙NTX˙NT
100 99 adantr φX0˙X˙NTX˙NT
101 98 100 eqssd φX0˙X˙NT=X˙NT
102 31 101 pm2.61dane φX˙NT=X˙NT