| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihmeetlem13.b |  | 
						
							| 2 |  | dihmeetlem13.l |  | 
						
							| 3 |  | dihmeetlem13.j |  | 
						
							| 4 |  | dihmeetlem13.a |  | 
						
							| 5 |  | dihmeetlem13.h |  | 
						
							| 6 |  | dihmeetlem13.p |  | 
						
							| 7 |  | dihmeetlem13.t |  | 
						
							| 8 |  | dihmeetlem13.e |  | 
						
							| 9 |  | dihmeetlem13.o |  | 
						
							| 10 |  | dihmeetlem13.i |  | 
						
							| 11 |  | dihmeetlem13.u |  | 
						
							| 12 |  | dihmeetlem13.z |  | 
						
							| 13 |  | dihmeetlem13.f |  | 
						
							| 14 |  | dihmeetlem13.g |  | 
						
							| 15 | 5 10 | dihvalrel |  | 
						
							| 16 | 15 | 3ad2ant1 |  | 
						
							| 17 |  | relin1 |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 |  | elin |  | 
						
							| 20 |  | simp1 |  | 
						
							| 21 |  | simp2l |  | 
						
							| 22 |  | vex |  | 
						
							| 23 |  | vex |  | 
						
							| 24 | 2 4 5 6 7 8 10 13 22 23 | dihopelvalcqat |  | 
						
							| 25 | 20 21 24 | syl2anc |  | 
						
							| 26 |  | simp2r |  | 
						
							| 27 | 2 4 5 6 7 8 10 14 22 23 | dihopelvalcqat |  | 
						
							| 28 | 20 26 27 | syl2anc |  | 
						
							| 29 | 25 28 | anbi12d |  | 
						
							| 30 | 19 29 | bitrid |  | 
						
							| 31 |  | simprll |  | 
						
							| 32 |  | simpl3 |  | 
						
							| 33 |  | fveq1 |  | 
						
							| 34 |  | simpl1 |  | 
						
							| 35 | 2 4 5 6 | lhpocnel2 |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 |  | simpl2l |  | 
						
							| 38 | 2 4 5 7 13 | ltrniotaval |  | 
						
							| 39 | 34 36 37 38 | syl3anc |  | 
						
							| 40 |  | simpl2r |  | 
						
							| 41 | 2 4 5 7 14 | ltrniotaval |  | 
						
							| 42 | 34 36 40 41 | syl3anc |  | 
						
							| 43 | 39 42 | eqeq12d |  | 
						
							| 44 | 33 43 | imbitrid |  | 
						
							| 45 | 44 | necon3d |  | 
						
							| 46 | 32 45 | mpd |  | 
						
							| 47 |  | simp2ll |  | 
						
							| 48 |  | simp2rl |  | 
						
							| 49 | 47 48 | eqtr3d |  | 
						
							| 50 |  | simp11 |  | 
						
							| 51 |  | simp2rr |  | 
						
							| 52 |  | simp3 |  | 
						
							| 53 | 50 35 | syl |  | 
						
							| 54 |  | simp12l |  | 
						
							| 55 | 2 4 5 7 13 | ltrniotacl |  | 
						
							| 56 | 50 53 54 55 | syl3anc |  | 
						
							| 57 |  | simp12r |  | 
						
							| 58 | 2 4 5 7 14 | ltrniotacl |  | 
						
							| 59 | 50 53 57 58 | syl3anc |  | 
						
							| 60 | 1 5 7 8 9 | tendospcanN |  | 
						
							| 61 | 50 51 52 56 59 60 | syl122anc |  | 
						
							| 62 | 49 61 | mpbid |  | 
						
							| 63 | 62 | 3expia |  | 
						
							| 64 | 63 | necon1d |  | 
						
							| 65 | 46 64 | mpd |  | 
						
							| 66 | 65 | fveq1d |  | 
						
							| 67 | 34 36 37 55 | syl3anc |  | 
						
							| 68 | 9 1 | tendo02 |  | 
						
							| 69 | 67 68 | syl |  | 
						
							| 70 | 31 66 69 | 3eqtrd |  | 
						
							| 71 | 70 65 | jca |  | 
						
							| 72 | 71 | ex |  | 
						
							| 73 | 30 72 | sylbid |  | 
						
							| 74 |  | opex |  | 
						
							| 75 | 74 | elsn |  | 
						
							| 76 | 22 23 | opth |  | 
						
							| 77 | 75 76 | bitr2i |  | 
						
							| 78 | 1 5 7 11 12 9 | dvh0g |  | 
						
							| 79 | 78 | 3ad2ant1 |  | 
						
							| 80 | 79 | sneqd |  | 
						
							| 81 | 80 | eleq2d |  | 
						
							| 82 | 77 81 | bitr4id |  | 
						
							| 83 | 73 82 | sylibd |  | 
						
							| 84 | 18 83 | relssdv |  | 
						
							| 85 | 5 11 20 | dvhlmod |  | 
						
							| 86 |  | simp2ll |  | 
						
							| 87 | 1 4 | atbase |  | 
						
							| 88 | 86 87 | syl |  | 
						
							| 89 |  | eqid |  | 
						
							| 90 | 1 5 10 11 89 | dihlss |  | 
						
							| 91 | 20 88 90 | syl2anc |  | 
						
							| 92 |  | simp2rl |  | 
						
							| 93 | 1 4 | atbase |  | 
						
							| 94 | 92 93 | syl |  | 
						
							| 95 | 1 5 10 11 89 | dihlss |  | 
						
							| 96 | 20 94 95 | syl2anc |  | 
						
							| 97 | 89 | lssincl |  | 
						
							| 98 | 85 91 96 97 | syl3anc |  | 
						
							| 99 | 12 89 | lss0ss |  | 
						
							| 100 | 85 98 99 | syl2anc |  | 
						
							| 101 | 84 100 | eqssd |  |