Metamath Proof Explorer


Theorem dihmeetlem13N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem13.b B=BaseK
dihmeetlem13.l ˙=K
dihmeetlem13.j ˙=joinK
dihmeetlem13.a A=AtomsK
dihmeetlem13.h H=LHypK
dihmeetlem13.p P=ocKW
dihmeetlem13.t T=LTrnKW
dihmeetlem13.e E=TEndoKW
dihmeetlem13.o O=hTIB
dihmeetlem13.i I=DIsoHKW
dihmeetlem13.u U=DVecHKW
dihmeetlem13.z 0˙=0U
dihmeetlem13.f F=ιhT|hP=Q
dihmeetlem13.g G=ιhT|hP=R
Assertion dihmeetlem13N KHLWHQA¬Q˙WRA¬R˙WQRIQIR=0˙

Proof

Step Hyp Ref Expression
1 dihmeetlem13.b B=BaseK
2 dihmeetlem13.l ˙=K
3 dihmeetlem13.j ˙=joinK
4 dihmeetlem13.a A=AtomsK
5 dihmeetlem13.h H=LHypK
6 dihmeetlem13.p P=ocKW
7 dihmeetlem13.t T=LTrnKW
8 dihmeetlem13.e E=TEndoKW
9 dihmeetlem13.o O=hTIB
10 dihmeetlem13.i I=DIsoHKW
11 dihmeetlem13.u U=DVecHKW
12 dihmeetlem13.z 0˙=0U
13 dihmeetlem13.f F=ιhT|hP=Q
14 dihmeetlem13.g G=ιhT|hP=R
15 5 10 dihvalrel KHLWHRelIQ
16 15 3ad2ant1 KHLWHQA¬Q˙WRA¬R˙WQRRelIQ
17 relin1 RelIQRelIQIR
18 16 17 syl KHLWHQA¬Q˙WRA¬R˙WQRRelIQIR
19 elin fsIQIRfsIQfsIR
20 simp1 KHLWHQA¬Q˙WRA¬R˙WQRKHLWH
21 simp2l KHLWHQA¬Q˙WRA¬R˙WQRQA¬Q˙W
22 vex fV
23 vex sV
24 2 4 5 6 7 8 10 13 22 23 dihopelvalcqat KHLWHQA¬Q˙WfsIQf=sFsE
25 20 21 24 syl2anc KHLWHQA¬Q˙WRA¬R˙WQRfsIQf=sFsE
26 simp2r KHLWHQA¬Q˙WRA¬R˙WQRRA¬R˙W
27 2 4 5 6 7 8 10 14 22 23 dihopelvalcqat KHLWHRA¬R˙WfsIRf=sGsE
28 20 26 27 syl2anc KHLWHQA¬Q˙WRA¬R˙WQRfsIRf=sGsE
29 25 28 anbi12d KHLWHQA¬Q˙WRA¬R˙WQRfsIQfsIRf=sFsEf=sGsE
30 19 29 bitrid KHLWHQA¬Q˙WRA¬R˙WQRfsIQIRf=sFsEf=sGsE
31 simprll KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEf=sF
32 simpl3 KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEQR
33 fveq1 F=GFP=GP
34 simpl1 KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEKHLWH
35 2 4 5 6 lhpocnel2 KHLWHPA¬P˙W
36 34 35 syl KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEPA¬P˙W
37 simpl2l KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEQA¬Q˙W
38 2 4 5 7 13 ltrniotaval KHLWHPA¬P˙WQA¬Q˙WFP=Q
39 34 36 37 38 syl3anc KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEFP=Q
40 simpl2r KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsERA¬R˙W
41 2 4 5 7 14 ltrniotaval KHLWHPA¬P˙WRA¬R˙WGP=R
42 34 36 40 41 syl3anc KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEGP=R
43 39 42 eqeq12d KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEFP=GPQ=R
44 33 43 imbitrid KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEF=GQ=R
45 44 necon3d KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEQRFG
46 32 45 mpd KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEFG
47 simp2ll KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOf=sF
48 simp2rl KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOf=sG
49 47 48 eqtr3d KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOsF=sG
50 simp11 KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOKHLWH
51 simp2rr KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOsE
52 simp3 KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOsO
53 50 35 syl KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOPA¬P˙W
54 simp12l KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOQA¬Q˙W
55 2 4 5 7 13 ltrniotacl KHLWHPA¬P˙WQA¬Q˙WFT
56 50 53 54 55 syl3anc KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOFT
57 simp12r KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsORA¬R˙W
58 2 4 5 7 14 ltrniotacl KHLWHPA¬P˙WRA¬R˙WGT
59 50 53 57 58 syl3anc KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOGT
60 1 5 7 8 9 tendospcanN KHLWHsEsOFTGTsF=sGF=G
61 50 51 52 56 59 60 syl122anc KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOsF=sGF=G
62 49 61 mpbid KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOF=G
63 62 3expia KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsOF=G
64 63 necon1d KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEFGs=O
65 46 64 mpd KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEs=O
66 65 fveq1d KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEsF=OF
67 34 36 37 55 syl3anc KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEFT
68 9 1 tendo02 FTOF=IB
69 67 68 syl KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEOF=IB
70 31 66 69 3eqtrd KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEf=IB
71 70 65 jca KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEf=IBs=O
72 71 ex KHLWHQA¬Q˙WRA¬R˙WQRf=sFsEf=sGsEf=IBs=O
73 30 72 sylbid KHLWHQA¬Q˙WRA¬R˙WQRfsIQIRf=IBs=O
74 opex fsV
75 74 elsn fsIBOfs=IBO
76 22 23 opth fs=IBOf=IBs=O
77 75 76 bitr2i f=IBs=OfsIBO
78 1 5 7 11 12 9 dvh0g KHLWH0˙=IBO
79 78 3ad2ant1 KHLWHQA¬Q˙WRA¬R˙WQR0˙=IBO
80 79 sneqd KHLWHQA¬Q˙WRA¬R˙WQR0˙=IBO
81 80 eleq2d KHLWHQA¬Q˙WRA¬R˙WQRfs0˙fsIBO
82 77 81 bitr4id KHLWHQA¬Q˙WRA¬R˙WQRf=IBs=Ofs0˙
83 73 82 sylibd KHLWHQA¬Q˙WRA¬R˙WQRfsIQIRfs0˙
84 18 83 relssdv KHLWHQA¬Q˙WRA¬R˙WQRIQIR0˙
85 5 11 20 dvhlmod KHLWHQA¬Q˙WRA¬R˙WQRULMod
86 simp2ll KHLWHQA¬Q˙WRA¬R˙WQRQA
87 1 4 atbase QAQB
88 86 87 syl KHLWHQA¬Q˙WRA¬R˙WQRQB
89 eqid LSubSpU=LSubSpU
90 1 5 10 11 89 dihlss KHLWHQBIQLSubSpU
91 20 88 90 syl2anc KHLWHQA¬Q˙WRA¬R˙WQRIQLSubSpU
92 simp2rl KHLWHQA¬Q˙WRA¬R˙WQRRA
93 1 4 atbase RARB
94 92 93 syl KHLWHQA¬Q˙WRA¬R˙WQRRB
95 1 5 10 11 89 dihlss KHLWHRBIRLSubSpU
96 20 94 95 syl2anc KHLWHQA¬Q˙WRA¬R˙WQRIRLSubSpU
97 89 lssincl ULModIQLSubSpUIRLSubSpUIQIRLSubSpU
98 85 91 96 97 syl3anc KHLWHQA¬Q˙WRA¬R˙WQRIQIRLSubSpU
99 12 89 lss0ss ULModIQIRLSubSpU0˙IQIR
100 85 98 99 syl2anc KHLWHQA¬Q˙WRA¬R˙WQR0˙IQIR
101 84 100 eqssd KHLWHQA¬Q˙WRA¬R˙WQRIQIR=0˙