Metamath Proof Explorer


Theorem diophrw

Description: Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014)

Ref Expression
Assertion diophrw S V M : T 1-1 S M O = I O a | b 0 S a = b O d S P d M b = 0 = a | c 0 T a = c O P c = 0

Proof

Step Hyp Ref Expression
1 simpr S V M : T 1-1 S M O = I O b 0 S b 0 S
2 nn0ex 0 V
3 simp1 S V M : T 1-1 S M O = I O S V
4 3 adantr S V M : T 1-1 S M O = I O b 0 S S V
5 elmapg 0 V S V b 0 S b : S 0
6 2 4 5 sylancr S V M : T 1-1 S M O = I O b 0 S b 0 S b : S 0
7 1 6 mpbid S V M : T 1-1 S M O = I O b 0 S b : S 0
8 7 adantr S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 b : S 0
9 simp2 S V M : T 1-1 S M O = I O M : T 1-1 S
10 f1f M : T 1-1 S M : T S
11 9 10 syl S V M : T 1-1 S M O = I O M : T S
12 11 ad2antrr S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 M : T S
13 fco b : S 0 M : T S b M : T 0
14 8 12 13 syl2anc S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 b M : T 0
15 f1dmex M : T 1-1 S S V T V
16 9 3 15 syl2anc S V M : T 1-1 S M O = I O T V
17 16 ad2antrr S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 T V
18 elmapg 0 V T V b M 0 T b M : T 0
19 2 17 18 sylancr S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 b M 0 T b M : T 0
20 14 19 mpbird S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 b M 0 T
21 simprl S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 a = b O
22 resco b M O = b M O
23 simpll3 S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 M O = I O
24 23 coeq2d S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 b M O = b I O
25 coires1 b I O = b O
26 24 25 eqtrdi S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 b M O = b O
27 22 26 eqtrid S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 b M O = b O
28 21 27 eqtr4d S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 a = b M O
29 simpll1 S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 S V
30 oveq2 a = S 0 a = 0 S
31 oveq2 a = S a = S
32 30 31 sseq12d a = S 0 a a 0 S S
33 zex V
34 nn0ssz 0
35 mapss V 0 0 a a
36 33 34 35 mp2an 0 a a
37 32 36 vtoclg S V 0 S S
38 29 37 syl S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 0 S S
39 simplr S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 b 0 S
40 38 39 sseldd S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 b S
41 coeq1 d = b d M = b M
42 41 fveq2d d = b P d M = P b M
43 eqid d S P d M = d S P d M
44 fvex P b M V
45 42 43 44 fvmpt b S d S P d M b = P b M
46 40 45 syl S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 d S P d M b = P b M
47 simprr S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 d S P d M b = 0
48 46 47 eqtr3d S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 P b M = 0
49 reseq1 c = b M c O = b M O
50 49 eqeq2d c = b M a = c O a = b M O
51 fveqeq2 c = b M P c = 0 P b M = 0
52 50 51 anbi12d c = b M a = c O P c = 0 a = b M O P b M = 0
53 52 rspcev b M 0 T a = b M O P b M = 0 c 0 T a = c O P c = 0
54 20 28 48 53 syl12anc S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 c 0 T a = c O P c = 0
55 54 rexlimdva2 S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 c 0 T a = c O P c = 0
56 simpr S V M : T 1-1 S M O = I O c 0 T c 0 T
57 16 adantr S V M : T 1-1 S M O = I O c 0 T T V
58 elmapg 0 V T V c 0 T c : T 0
59 2 57 58 sylancr S V M : T 1-1 S M O = I O c 0 T c 0 T c : T 0
60 56 59 mpbid S V M : T 1-1 S M O = I O c 0 T c : T 0
61 60 adantr S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c : T 0
62 9 ad2antrr S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 M : T 1-1 S
63 f1cnv M : T 1-1 S M -1 : ran M 1-1 onto T
64 f1of M -1 : ran M 1-1 onto T M -1 : ran M T
65 62 63 64 3syl S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 M -1 : ran M T
66 fco c : T 0 M -1 : ran M T c M -1 : ran M 0
67 61 65 66 syl2anc S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 : ran M 0
68 c0ex 0 V
69 68 fconst S ran M × 0 : S ran M 0
70 69 a1i S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 S ran M × 0 : S ran M 0
71 disjdif ran M S ran M =
72 71 a1i S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 ran M S ran M =
73 fun c M -1 : ran M 0 S ran M × 0 : S ran M 0 ran M S ran M = c M -1 S ran M × 0 : ran M S ran M 0 0
74 67 70 72 73 syl21anc S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 S ran M × 0 : ran M S ran M 0 0
75 frn M : T S ran M S
76 9 10 75 3syl S V M : T 1-1 S M O = I O ran M S
77 76 ad2antrr S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 ran M S
78 undif ran M S ran M S ran M = S
79 77 78 sylib S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 ran M S ran M = S
80 0nn0 0 0
81 snssi 0 0 0 0
82 80 81 ax-mp 0 0
83 ssequn2 0 0 0 0 = 0
84 82 83 mpbi 0 0 = 0
85 84 a1i S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 0 0 = 0
86 79 85 feq23d S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 S ran M × 0 : ran M S ran M 0 0 c M -1 S ran M × 0 : S 0
87 74 86 mpbid S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 S ran M × 0 : S 0
88 elmapg 0 V S V c M -1 S ran M × 0 0 S c M -1 S ran M × 0 : S 0
89 2 3 88 sylancr S V M : T 1-1 S M O = I O c M -1 S ran M × 0 0 S c M -1 S ran M × 0 : S 0
90 89 ad2antrr S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 S ran M × 0 0 S c M -1 S ran M × 0 : S 0
91 87 90 mpbird S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 S ran M × 0 0 S
92 simprl S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 a = c O
93 resundir c M -1 S ran M × 0 O = c M -1 O S ran M × 0 O
94 resco c M -1 O = c M -1 O
95 simpl2 S V M : T 1-1 S M O = I O c 0 T M : T 1-1 S
96 df-f1 M : T 1-1 S M : T S Fun M -1
97 96 simprbi M : T 1-1 S Fun M -1
98 funcnvres Fun M -1 M O -1 = M -1 M O
99 95 97 98 3syl S V M : T 1-1 S M O = I O c 0 T M O -1 = M -1 M O
100 simpl3 S V M : T 1-1 S M O = I O c 0 T M O = I O
101 100 cnveqd S V M : T 1-1 S M O = I O c 0 T M O -1 = I O -1
102 df-ima M O = ran M O
103 100 rneqd S V M : T 1-1 S M O = I O c 0 T ran M O = ran I O
104 rnresi ran I O = O
105 103 104 eqtrdi S V M : T 1-1 S M O = I O c 0 T ran M O = O
106 102 105 eqtrid S V M : T 1-1 S M O = I O c 0 T M O = O
107 106 reseq2d S V M : T 1-1 S M O = I O c 0 T M -1 M O = M -1 O
108 99 101 107 3eqtr3d S V M : T 1-1 S M O = I O c 0 T I O -1 = M -1 O
109 cnvresid I O -1 = I O
110 108 109 eqtr3di S V M : T 1-1 S M O = I O c 0 T M -1 O = I O
111 110 coeq2d S V M : T 1-1 S M O = I O c 0 T c M -1 O = c I O
112 coires1 c I O = c O
113 111 112 eqtrdi S V M : T 1-1 S M O = I O c 0 T c M -1 O = c O
114 94 113 eqtrid S V M : T 1-1 S M O = I O c 0 T c M -1 O = c O
115 dmres dom S ran M × 0 O = O dom S ran M × 0
116 68 snnz 0
117 dmxp 0 dom S ran M × 0 = S ran M
118 116 117 ax-mp dom S ran M × 0 = S ran M
119 118 ineq2i O dom S ran M × 0 = O S ran M
120 inss1 O S O
121 103 104 eqtr2di S V M : T 1-1 S M O = I O c 0 T O = ran M O
122 resss M O M
123 rnss M O M ran M O ran M
124 122 123 mp1i S V M : T 1-1 S M O = I O c 0 T ran M O ran M
125 121 124 eqsstrd S V M : T 1-1 S M O = I O c 0 T O ran M
126 120 125 sstrid S V M : T 1-1 S M O = I O c 0 T O S ran M
127 inssdif0 O S ran M O S ran M =
128 126 127 sylib S V M : T 1-1 S M O = I O c 0 T O S ran M =
129 119 128 eqtrid S V M : T 1-1 S M O = I O c 0 T O dom S ran M × 0 =
130 115 129 eqtrid S V M : T 1-1 S M O = I O c 0 T dom S ran M × 0 O =
131 relres Rel S ran M × 0 O
132 reldm0 Rel S ran M × 0 O S ran M × 0 O = dom S ran M × 0 O =
133 131 132 ax-mp S ran M × 0 O = dom S ran M × 0 O =
134 130 133 sylibr S V M : T 1-1 S M O = I O c 0 T S ran M × 0 O =
135 114 134 uneq12d S V M : T 1-1 S M O = I O c 0 T c M -1 O S ran M × 0 O = c O
136 93 135 eqtrid S V M : T 1-1 S M O = I O c 0 T c M -1 S ran M × 0 O = c O
137 un0 c O = c O
138 136 137 eqtr2di S V M : T 1-1 S M O = I O c 0 T c O = c M -1 S ran M × 0 O
139 138 adantr S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c O = c M -1 S ran M × 0 O
140 92 139 eqtrd S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 a = c M -1 S ran M × 0 O
141 fss c : T 0 0 c : T
142 60 34 141 sylancl S V M : T 1-1 S M O = I O c 0 T c : T
143 142 adantr S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c : T
144 fco c : T M -1 : ran M T c M -1 : ran M
145 143 65 144 syl2anc S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 : ran M
146 fun c M -1 : ran M S ran M × 0 : S ran M 0 ran M S ran M = c M -1 S ran M × 0 : ran M S ran M 0
147 145 70 72 146 syl21anc S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 S ran M × 0 : ran M S ran M 0
148 0z 0
149 snssi 0 0
150 148 149 ax-mp 0
151 ssequn2 0 0 =
152 150 151 mpbi 0 =
153 152 a1i S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 0 =
154 79 153 feq23d S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 S ran M × 0 : ran M S ran M 0 c M -1 S ran M × 0 : S
155 147 154 mpbid S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 S ran M × 0 : S
156 elmapg V S V c M -1 S ran M × 0 S c M -1 S ran M × 0 : S
157 33 3 156 sylancr S V M : T 1-1 S M O = I O c M -1 S ran M × 0 S c M -1 S ran M × 0 : S
158 157 ad2antrr S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 S ran M × 0 S c M -1 S ran M × 0 : S
159 155 158 mpbird S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 S ran M × 0 S
160 coeq1 d = c M -1 S ran M × 0 d M = c M -1 S ran M × 0 M
161 160 fveq2d d = c M -1 S ran M × 0 P d M = P c M -1 S ran M × 0 M
162 fvex P c M -1 S ran M × 0 M V
163 161 43 162 fvmpt c M -1 S ran M × 0 S d S P d M c M -1 S ran M × 0 = P c M -1 S ran M × 0 M
164 159 163 syl S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 d S P d M c M -1 S ran M × 0 = P c M -1 S ran M × 0 M
165 coundir c M -1 S ran M × 0 M = c M -1 M S ran M × 0 M
166 coass c M -1 M = c M -1 M
167 f1cocnv1 M : T 1-1 S M -1 M = I T
168 167 coeq2d M : T 1-1 S c M -1 M = c I T
169 62 168 syl S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 M = c I T
170 166 169 eqtrid S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 M = c I T
171 118 ineq1i dom S ran M × 0 ran M = S ran M ran M
172 incom S ran M ran M = ran M S ran M
173 171 172 71 3eqtri dom S ran M × 0 ran M =
174 coeq0 S ran M × 0 M = dom S ran M × 0 ran M =
175 173 174 mpbir S ran M × 0 M =
176 175 a1i S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 S ran M × 0 M =
177 170 176 uneq12d S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 M S ran M × 0 M = c I T
178 un0 c I T = c I T
179 fcoi1 c : T 0 c I T = c
180 61 179 syl S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c I T = c
181 178 180 eqtrid S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c I T = c
182 177 181 eqtrd S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 M S ran M × 0 M = c
183 165 182 eqtrid S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 c M -1 S ran M × 0 M = c
184 183 fveq2d S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 P c M -1 S ran M × 0 M = P c
185 simprr S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 P c = 0
186 164 184 185 3eqtrd S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 d S P d M c M -1 S ran M × 0 = 0
187 reseq1 b = c M -1 S ran M × 0 b O = c M -1 S ran M × 0 O
188 187 eqeq2d b = c M -1 S ran M × 0 a = b O a = c M -1 S ran M × 0 O
189 fveqeq2 b = c M -1 S ran M × 0 d S P d M b = 0 d S P d M c M -1 S ran M × 0 = 0
190 188 189 anbi12d b = c M -1 S ran M × 0 a = b O d S P d M b = 0 a = c M -1 S ran M × 0 O d S P d M c M -1 S ran M × 0 = 0
191 190 rspcev c M -1 S ran M × 0 0 S a = c M -1 S ran M × 0 O d S P d M c M -1 S ran M × 0 = 0 b 0 S a = b O d S P d M b = 0
192 91 140 186 191 syl12anc S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 b 0 S a = b O d S P d M b = 0
193 192 rexlimdva2 S V M : T 1-1 S M O = I O c 0 T a = c O P c = 0 b 0 S a = b O d S P d M b = 0
194 55 193 impbid S V M : T 1-1 S M O = I O b 0 S a = b O d S P d M b = 0 c 0 T a = c O P c = 0
195 194 abbidv S V M : T 1-1 S M O = I O a | b 0 S a = b O d S P d M b = 0 = a | c 0 T a = c O P c = 0