Metamath Proof Explorer


Theorem diophrw

Description: Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014)

Ref Expression
Assertion diophrw SVM:T1-1SMO=IOa|b0Sa=bOdSPdMb=0=a|c0Ta=cOPc=0

Proof

Step Hyp Ref Expression
1 simpr SVM:T1-1SMO=IOb0Sb0S
2 nn0ex 0V
3 simp1 SVM:T1-1SMO=IOSV
4 3 adantr SVM:T1-1SMO=IOb0SSV
5 elmapg 0VSVb0Sb:S0
6 2 4 5 sylancr SVM:T1-1SMO=IOb0Sb0Sb:S0
7 1 6 mpbid SVM:T1-1SMO=IOb0Sb:S0
8 7 adantr SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0b:S0
9 simp2 SVM:T1-1SMO=IOM:T1-1S
10 f1f M:T1-1SM:TS
11 9 10 syl SVM:T1-1SMO=IOM:TS
12 11 ad2antrr SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0M:TS
13 fco b:S0M:TSbM:T0
14 8 12 13 syl2anc SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0bM:T0
15 f1dmex M:T1-1SSVTV
16 9 3 15 syl2anc SVM:T1-1SMO=IOTV
17 16 ad2antrr SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0TV
18 elmapg 0VTVbM0TbM:T0
19 2 17 18 sylancr SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0bM0TbM:T0
20 14 19 mpbird SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0bM0T
21 simprl SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0a=bO
22 resco bMO=bMO
23 simpll3 SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0MO=IO
24 23 coeq2d SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0bMO=bIO
25 coires1 bIO=bO
26 24 25 eqtrdi SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0bMO=bO
27 22 26 eqtrid SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0bMO=bO
28 21 27 eqtr4d SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0a=bMO
29 simpll1 SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0SV
30 oveq2 a=S0a=0S
31 oveq2 a=Sa=S
32 30 31 sseq12d a=S0aa0SS
33 zex V
34 nn0ssz 0
35 mapss V00aa
36 33 34 35 mp2an 0aa
37 32 36 vtoclg SV0SS
38 29 37 syl SVM:T1-1SMO=IOb0Sa=bOdSPdMb=00SS
39 simplr SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0b0S
40 38 39 sseldd SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0bS
41 coeq1 d=bdM=bM
42 41 fveq2d d=bPdM=PbM
43 eqid dSPdM=dSPdM
44 fvex PbMV
45 42 43 44 fvmpt bSdSPdMb=PbM
46 40 45 syl SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0dSPdMb=PbM
47 simprr SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0dSPdMb=0
48 46 47 eqtr3d SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0PbM=0
49 reseq1 c=bMcO=bMO
50 49 eqeq2d c=bMa=cOa=bMO
51 fveqeq2 c=bMPc=0PbM=0
52 50 51 anbi12d c=bMa=cOPc=0a=bMOPbM=0
53 52 rspcev bM0Ta=bMOPbM=0c0Ta=cOPc=0
54 20 28 48 53 syl12anc SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0c0Ta=cOPc=0
55 54 rexlimdva2 SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0c0Ta=cOPc=0
56 simpr SVM:T1-1SMO=IOc0Tc0T
57 16 adantr SVM:T1-1SMO=IOc0TTV
58 elmapg 0VTVc0Tc:T0
59 2 57 58 sylancr SVM:T1-1SMO=IOc0Tc0Tc:T0
60 56 59 mpbid SVM:T1-1SMO=IOc0Tc:T0
61 60 adantr SVM:T1-1SMO=IOc0Ta=cOPc=0c:T0
62 9 ad2antrr SVM:T1-1SMO=IOc0Ta=cOPc=0M:T1-1S
63 f1cnv M:T1-1SM-1:ranM1-1 ontoT
64 f1of M-1:ranM1-1 ontoTM-1:ranMT
65 62 63 64 3syl SVM:T1-1SMO=IOc0Ta=cOPc=0M-1:ranMT
66 fco c:T0M-1:ranMTcM-1:ranM0
67 61 65 66 syl2anc SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1:ranM0
68 c0ex 0V
69 68 fconst SranM×0:SranM0
70 69 a1i SVM:T1-1SMO=IOc0Ta=cOPc=0SranM×0:SranM0
71 disjdif ranMSranM=
72 71 a1i SVM:T1-1SMO=IOc0Ta=cOPc=0ranMSranM=
73 fun cM-1:ranM0SranM×0:SranM0ranMSranM=cM-1SranM×0:ranMSranM00
74 67 70 72 73 syl21anc SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1SranM×0:ranMSranM00
75 frn M:TSranMS
76 9 10 75 3syl SVM:T1-1SMO=IOranMS
77 76 ad2antrr SVM:T1-1SMO=IOc0Ta=cOPc=0ranMS
78 undif ranMSranMSranM=S
79 77 78 sylib SVM:T1-1SMO=IOc0Ta=cOPc=0ranMSranM=S
80 0nn0 00
81 snssi 0000
82 80 81 ax-mp 00
83 ssequn2 0000=0
84 82 83 mpbi 00=0
85 84 a1i SVM:T1-1SMO=IOc0Ta=cOPc=000=0
86 79 85 feq23d SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1SranM×0:ranMSranM00cM-1SranM×0:S0
87 74 86 mpbid SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1SranM×0:S0
88 elmapg 0VSVcM-1SranM×00ScM-1SranM×0:S0
89 2 3 88 sylancr SVM:T1-1SMO=IOcM-1SranM×00ScM-1SranM×0:S0
90 89 ad2antrr SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1SranM×00ScM-1SranM×0:S0
91 87 90 mpbird SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1SranM×00S
92 simprl SVM:T1-1SMO=IOc0Ta=cOPc=0a=cO
93 resundir cM-1SranM×0O=cM-1OSranM×0O
94 resco cM-1O=cM-1O
95 simpl2 SVM:T1-1SMO=IOc0TM:T1-1S
96 df-f1 M:T1-1SM:TSFunM-1
97 96 simprbi M:T1-1SFunM-1
98 funcnvres FunM-1MO-1=M-1MO
99 95 97 98 3syl SVM:T1-1SMO=IOc0TMO-1=M-1MO
100 simpl3 SVM:T1-1SMO=IOc0TMO=IO
101 100 cnveqd SVM:T1-1SMO=IOc0TMO-1=IO-1
102 df-ima MO=ranMO
103 100 rneqd SVM:T1-1SMO=IOc0TranMO=ranIO
104 rnresi ranIO=O
105 103 104 eqtrdi SVM:T1-1SMO=IOc0TranMO=O
106 102 105 eqtrid SVM:T1-1SMO=IOc0TMO=O
107 106 reseq2d SVM:T1-1SMO=IOc0TM-1MO=M-1O
108 99 101 107 3eqtr3d SVM:T1-1SMO=IOc0TIO-1=M-1O
109 cnvresid IO-1=IO
110 108 109 eqtr3di SVM:T1-1SMO=IOc0TM-1O=IO
111 110 coeq2d SVM:T1-1SMO=IOc0TcM-1O=cIO
112 coires1 cIO=cO
113 111 112 eqtrdi SVM:T1-1SMO=IOc0TcM-1O=cO
114 94 113 eqtrid SVM:T1-1SMO=IOc0TcM-1O=cO
115 dmres domSranM×0O=OdomSranM×0
116 68 snnz 0
117 dmxp 0domSranM×0=SranM
118 116 117 ax-mp domSranM×0=SranM
119 118 ineq2i OdomSranM×0=OSranM
120 inss1 OSO
121 103 104 eqtr2di SVM:T1-1SMO=IOc0TO=ranMO
122 resss MOM
123 rnss MOMranMOranM
124 122 123 mp1i SVM:T1-1SMO=IOc0TranMOranM
125 121 124 eqsstrd SVM:T1-1SMO=IOc0TOranM
126 120 125 sstrid SVM:T1-1SMO=IOc0TOSranM
127 inssdif0 OSranMOSranM=
128 126 127 sylib SVM:T1-1SMO=IOc0TOSranM=
129 119 128 eqtrid SVM:T1-1SMO=IOc0TOdomSranM×0=
130 115 129 eqtrid SVM:T1-1SMO=IOc0TdomSranM×0O=
131 relres RelSranM×0O
132 reldm0 RelSranM×0OSranM×0O=domSranM×0O=
133 131 132 ax-mp SranM×0O=domSranM×0O=
134 130 133 sylibr SVM:T1-1SMO=IOc0TSranM×0O=
135 114 134 uneq12d SVM:T1-1SMO=IOc0TcM-1OSranM×0O=cO
136 93 135 eqtrid SVM:T1-1SMO=IOc0TcM-1SranM×0O=cO
137 un0 cO=cO
138 136 137 eqtr2di SVM:T1-1SMO=IOc0TcO=cM-1SranM×0O
139 138 adantr SVM:T1-1SMO=IOc0Ta=cOPc=0cO=cM-1SranM×0O
140 92 139 eqtrd SVM:T1-1SMO=IOc0Ta=cOPc=0a=cM-1SranM×0O
141 fss c:T00c:T
142 60 34 141 sylancl SVM:T1-1SMO=IOc0Tc:T
143 142 adantr SVM:T1-1SMO=IOc0Ta=cOPc=0c:T
144 fco c:TM-1:ranMTcM-1:ranM
145 143 65 144 syl2anc SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1:ranM
146 fun cM-1:ranMSranM×0:SranM0ranMSranM=cM-1SranM×0:ranMSranM0
147 145 70 72 146 syl21anc SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1SranM×0:ranMSranM0
148 0z 0
149 snssi 00
150 148 149 ax-mp 0
151 ssequn2 00=
152 150 151 mpbi 0=
153 152 a1i SVM:T1-1SMO=IOc0Ta=cOPc=00=
154 79 153 feq23d SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1SranM×0:ranMSranM0cM-1SranM×0:S
155 147 154 mpbid SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1SranM×0:S
156 elmapg VSVcM-1SranM×0ScM-1SranM×0:S
157 33 3 156 sylancr SVM:T1-1SMO=IOcM-1SranM×0ScM-1SranM×0:S
158 157 ad2antrr SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1SranM×0ScM-1SranM×0:S
159 155 158 mpbird SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1SranM×0S
160 coeq1 d=cM-1SranM×0dM=cM-1SranM×0M
161 160 fveq2d d=cM-1SranM×0PdM=PcM-1SranM×0M
162 fvex PcM-1SranM×0MV
163 161 43 162 fvmpt cM-1SranM×0SdSPdMcM-1SranM×0=PcM-1SranM×0M
164 159 163 syl SVM:T1-1SMO=IOc0Ta=cOPc=0dSPdMcM-1SranM×0=PcM-1SranM×0M
165 coundir cM-1SranM×0M=cM-1MSranM×0M
166 coass cM-1M=cM-1M
167 f1cocnv1 M:T1-1SM-1M=IT
168 167 coeq2d M:T1-1ScM-1M=cIT
169 62 168 syl SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1M=cIT
170 166 169 eqtrid SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1M=cIT
171 118 ineq1i domSranM×0ranM=SranMranM
172 incom SranMranM=ranMSranM
173 171 172 71 3eqtri domSranM×0ranM=
174 coeq0 SranM×0M=domSranM×0ranM=
175 173 174 mpbir SranM×0M=
176 175 a1i SVM:T1-1SMO=IOc0Ta=cOPc=0SranM×0M=
177 170 176 uneq12d SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1MSranM×0M=cIT
178 un0 cIT=cIT
179 fcoi1 c:T0cIT=c
180 61 179 syl SVM:T1-1SMO=IOc0Ta=cOPc=0cIT=c
181 178 180 eqtrid SVM:T1-1SMO=IOc0Ta=cOPc=0cIT=c
182 177 181 eqtrd SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1MSranM×0M=c
183 165 182 eqtrid SVM:T1-1SMO=IOc0Ta=cOPc=0cM-1SranM×0M=c
184 183 fveq2d SVM:T1-1SMO=IOc0Ta=cOPc=0PcM-1SranM×0M=Pc
185 simprr SVM:T1-1SMO=IOc0Ta=cOPc=0Pc=0
186 164 184 185 3eqtrd SVM:T1-1SMO=IOc0Ta=cOPc=0dSPdMcM-1SranM×0=0
187 reseq1 b=cM-1SranM×0bO=cM-1SranM×0O
188 187 eqeq2d b=cM-1SranM×0a=bOa=cM-1SranM×0O
189 fveqeq2 b=cM-1SranM×0dSPdMb=0dSPdMcM-1SranM×0=0
190 188 189 anbi12d b=cM-1SranM×0a=bOdSPdMb=0a=cM-1SranM×0OdSPdMcM-1SranM×0=0
191 190 rspcev cM-1SranM×00Sa=cM-1SranM×0OdSPdMcM-1SranM×0=0b0Sa=bOdSPdMb=0
192 91 140 186 191 syl12anc SVM:T1-1SMO=IOc0Ta=cOPc=0b0Sa=bOdSPdMb=0
193 192 rexlimdva2 SVM:T1-1SMO=IOc0Ta=cOPc=0b0Sa=bOdSPdMb=0
194 55 193 impbid SVM:T1-1SMO=IOb0Sa=bOdSPdMb=0c0Ta=cOPc=0
195 194 abbidv SVM:T1-1SMO=IOa|b0Sa=bOdSPdMb=0=a|c0Ta=cOPc=0