Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
nn0ex |
|
3 |
|
simp1 |
|
4 |
3
|
adantr |
|
5 |
|
elmapg |
|
6 |
2 4 5
|
sylancr |
|
7 |
1 6
|
mpbid |
|
8 |
7
|
adantr |
|
9 |
|
simp2 |
|
10 |
|
f1f |
|
11 |
9 10
|
syl |
|
12 |
11
|
ad2antrr |
|
13 |
|
fco |
|
14 |
8 12 13
|
syl2anc |
|
15 |
|
f1dmex |
|
16 |
9 3 15
|
syl2anc |
|
17 |
16
|
ad2antrr |
|
18 |
|
elmapg |
|
19 |
2 17 18
|
sylancr |
|
20 |
14 19
|
mpbird |
|
21 |
|
simprl |
|
22 |
|
resco |
|
23 |
|
simpll3 |
|
24 |
23
|
coeq2d |
|
25 |
|
coires1 |
|
26 |
24 25
|
eqtrdi |
|
27 |
22 26
|
eqtrid |
|
28 |
21 27
|
eqtr4d |
|
29 |
|
simpll1 |
|
30 |
|
oveq2 |
|
31 |
|
oveq2 |
|
32 |
30 31
|
sseq12d |
|
33 |
|
zex |
|
34 |
|
nn0ssz |
|
35 |
|
mapss |
|
36 |
33 34 35
|
mp2an |
|
37 |
32 36
|
vtoclg |
|
38 |
29 37
|
syl |
|
39 |
|
simplr |
|
40 |
38 39
|
sseldd |
|
41 |
|
coeq1 |
|
42 |
41
|
fveq2d |
|
43 |
|
eqid |
|
44 |
|
fvex |
|
45 |
42 43 44
|
fvmpt |
|
46 |
40 45
|
syl |
|
47 |
|
simprr |
|
48 |
46 47
|
eqtr3d |
|
49 |
|
reseq1 |
|
50 |
49
|
eqeq2d |
|
51 |
|
fveqeq2 |
|
52 |
50 51
|
anbi12d |
|
53 |
52
|
rspcev |
|
54 |
20 28 48 53
|
syl12anc |
|
55 |
54
|
rexlimdva2 |
|
56 |
|
simpr |
|
57 |
16
|
adantr |
|
58 |
|
elmapg |
|
59 |
2 57 58
|
sylancr |
|
60 |
56 59
|
mpbid |
|
61 |
60
|
adantr |
|
62 |
9
|
ad2antrr |
|
63 |
|
f1cnv |
|
64 |
|
f1of |
|
65 |
62 63 64
|
3syl |
|
66 |
|
fco |
|
67 |
61 65 66
|
syl2anc |
|
68 |
|
c0ex |
|
69 |
68
|
fconst |
|
70 |
69
|
a1i |
|
71 |
|
disjdif |
|
72 |
71
|
a1i |
|
73 |
|
fun |
|
74 |
67 70 72 73
|
syl21anc |
|
75 |
|
frn |
|
76 |
9 10 75
|
3syl |
|
77 |
76
|
ad2antrr |
|
78 |
|
undif |
|
79 |
77 78
|
sylib |
|
80 |
|
0nn0 |
|
81 |
|
snssi |
|
82 |
80 81
|
ax-mp |
|
83 |
|
ssequn2 |
|
84 |
82 83
|
mpbi |
|
85 |
84
|
a1i |
|
86 |
79 85
|
feq23d |
|
87 |
74 86
|
mpbid |
|
88 |
|
elmapg |
|
89 |
2 3 88
|
sylancr |
|
90 |
89
|
ad2antrr |
|
91 |
87 90
|
mpbird |
|
92 |
|
simprl |
|
93 |
|
resundir |
|
94 |
|
resco |
|
95 |
|
simpl2 |
|
96 |
|
df-f1 |
|
97 |
96
|
simprbi |
|
98 |
|
funcnvres |
|
99 |
95 97 98
|
3syl |
|
100 |
|
simpl3 |
|
101 |
100
|
cnveqd |
|
102 |
|
df-ima |
|
103 |
100
|
rneqd |
|
104 |
|
rnresi |
|
105 |
103 104
|
eqtrdi |
|
106 |
102 105
|
eqtrid |
|
107 |
106
|
reseq2d |
|
108 |
99 101 107
|
3eqtr3d |
|
109 |
|
cnvresid |
|
110 |
108 109
|
eqtr3di |
|
111 |
110
|
coeq2d |
|
112 |
|
coires1 |
|
113 |
111 112
|
eqtrdi |
|
114 |
94 113
|
eqtrid |
|
115 |
|
dmres |
|
116 |
68
|
snnz |
|
117 |
|
dmxp |
|
118 |
116 117
|
ax-mp |
|
119 |
118
|
ineq2i |
|
120 |
|
inss1 |
|
121 |
103 104
|
eqtr2di |
|
122 |
|
resss |
|
123 |
|
rnss |
|
124 |
122 123
|
mp1i |
|
125 |
121 124
|
eqsstrd |
|
126 |
120 125
|
sstrid |
|
127 |
|
inssdif0 |
|
128 |
126 127
|
sylib |
|
129 |
119 128
|
eqtrid |
|
130 |
115 129
|
eqtrid |
|
131 |
|
relres |
|
132 |
|
reldm0 |
|
133 |
131 132
|
ax-mp |
|
134 |
130 133
|
sylibr |
|
135 |
114 134
|
uneq12d |
|
136 |
93 135
|
eqtrid |
|
137 |
|
un0 |
|
138 |
136 137
|
eqtr2di |
|
139 |
138
|
adantr |
|
140 |
92 139
|
eqtrd |
|
141 |
|
fss |
|
142 |
60 34 141
|
sylancl |
|
143 |
142
|
adantr |
|
144 |
|
fco |
|
145 |
143 65 144
|
syl2anc |
|
146 |
|
fun |
|
147 |
145 70 72 146
|
syl21anc |
|
148 |
|
0z |
|
149 |
|
snssi |
|
150 |
148 149
|
ax-mp |
|
151 |
|
ssequn2 |
|
152 |
150 151
|
mpbi |
|
153 |
152
|
a1i |
|
154 |
79 153
|
feq23d |
|
155 |
147 154
|
mpbid |
|
156 |
|
elmapg |
|
157 |
33 3 156
|
sylancr |
|
158 |
157
|
ad2antrr |
|
159 |
155 158
|
mpbird |
|
160 |
|
coeq1 |
|
161 |
160
|
fveq2d |
|
162 |
|
fvex |
|
163 |
161 43 162
|
fvmpt |
|
164 |
159 163
|
syl |
|
165 |
|
coundir |
|
166 |
|
coass |
|
167 |
|
f1cocnv1 |
|
168 |
167
|
coeq2d |
|
169 |
62 168
|
syl |
|
170 |
166 169
|
eqtrid |
|
171 |
118
|
ineq1i |
|
172 |
|
incom |
|
173 |
171 172 71
|
3eqtri |
|
174 |
|
coeq0 |
|
175 |
173 174
|
mpbir |
|
176 |
175
|
a1i |
|
177 |
170 176
|
uneq12d |
|
178 |
|
un0 |
|
179 |
|
fcoi1 |
|
180 |
61 179
|
syl |
|
181 |
178 180
|
eqtrid |
|
182 |
177 181
|
eqtrd |
|
183 |
165 182
|
eqtrid |
|
184 |
183
|
fveq2d |
|
185 |
|
simprr |
|
186 |
164 184 185
|
3eqtrd |
|
187 |
|
reseq1 |
|
188 |
187
|
eqeq2d |
|
189 |
|
fveqeq2 |
|
190 |
188 189
|
anbi12d |
|
191 |
190
|
rspcev |
|
192 |
91 140 186 191
|
syl12anc |
|
193 |
192
|
rexlimdva2 |
|
194 |
55 193
|
impbid |
|
195 |
194
|
abbidv |
|