Description: Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dochss.h | |
|
dochss.u | |
||
dochss.v | |
||
dochss.o | |
||
Assertion | dochocss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochss.h | |
|
2 | dochss.u | |
|
3 | dochss.v | |
|
4 | dochss.o | |
|
5 | ssintub | |
|
6 | eqid | |
|
7 | 1 6 2 3 4 | dochcl | |
8 | eqid | |
|
9 | 8 1 6 4 | dochvalr | |
10 | 7 9 | syldan | |
11 | 8 1 6 2 3 4 | dochval2 | |
12 | 11 | fveq2d | |
13 | eqid | |
|
14 | eqid | |
|
15 | 13 1 6 2 14 | dihf11 | |
16 | 15 | adantr | |
17 | f1f1orn | |
|
18 | 16 17 | syl | |
19 | hlop | |
|
20 | 19 | ad2antrr | |
21 | simpl | |
|
22 | ssrab2 | |
|
23 | 22 | a1i | |
24 | eqid | |
|
25 | 24 1 6 2 3 | dih1 | |
26 | 25 | adantr | |
27 | f1fn | |
|
28 | 16 27 | syl | |
29 | 13 24 | op1cl | |
30 | 20 29 | syl | |
31 | fnfvelrn | |
|
32 | 28 30 31 | syl2anc | |
33 | 26 32 | eqeltrrd | |
34 | simpr | |
|
35 | sseq2 | |
|
36 | 35 | elrab | |
37 | 33 34 36 | sylanbrc | |
38 | 37 | ne0d | |
39 | 1 6 | dihintcl | |
40 | 21 23 38 39 | syl12anc | |
41 | f1ocnvdm | |
|
42 | 18 40 41 | syl2anc | |
43 | 13 8 | opoccl | |
44 | 20 42 43 | syl2anc | |
45 | f1ocnvfv1 | |
|
46 | 18 44 45 | syl2anc | |
47 | 12 46 | eqtrd | |
48 | 47 | fveq2d | |
49 | 13 8 | opococ | |
50 | 20 42 49 | syl2anc | |
51 | 48 50 | eqtrd | |
52 | 51 | fveq2d | |
53 | f1ocnvfv2 | |
|
54 | 18 40 53 | syl2anc | |
55 | 10 52 54 | 3eqtrrd | |
56 | 5 55 | sseqtrid | |