Metamath Proof Explorer


Theorem dochocss

Description: Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses dochss.h H=LHypK
dochss.u U=DVecHKW
dochss.v V=BaseU
dochss.o ˙=ocHKW
Assertion dochocss KHLWHXVX˙˙X

Proof

Step Hyp Ref Expression
1 dochss.h H=LHypK
2 dochss.u U=DVecHKW
3 dochss.v V=BaseU
4 dochss.o ˙=ocHKW
5 ssintub XzranDIsoHKW|Xz
6 eqid DIsoHKW=DIsoHKW
7 1 6 2 3 4 dochcl KHLWHXV˙XranDIsoHKW
8 eqid ocK=ocK
9 8 1 6 4 dochvalr KHLWH˙XranDIsoHKW˙˙X=DIsoHKWocKDIsoHKW-1˙X
10 7 9 syldan KHLWHXV˙˙X=DIsoHKWocKDIsoHKW-1˙X
11 8 1 6 2 3 4 dochval2 KHLWHXV˙X=DIsoHKWocKDIsoHKW-1zranDIsoHKW|Xz
12 11 fveq2d KHLWHXVDIsoHKW-1˙X=DIsoHKW-1DIsoHKWocKDIsoHKW-1zranDIsoHKW|Xz
13 eqid BaseK=BaseK
14 eqid LSubSpU=LSubSpU
15 13 1 6 2 14 dihf11 KHLWHDIsoHKW:BaseK1-1LSubSpU
16 15 adantr KHLWHXVDIsoHKW:BaseK1-1LSubSpU
17 f1f1orn DIsoHKW:BaseK1-1LSubSpUDIsoHKW:BaseK1-1 ontoranDIsoHKW
18 16 17 syl KHLWHXVDIsoHKW:BaseK1-1 ontoranDIsoHKW
19 hlop KHLKOP
20 19 ad2antrr KHLWHXVKOP
21 simpl KHLWHXVKHLWH
22 ssrab2 zranDIsoHKW|XzranDIsoHKW
23 22 a1i KHLWHXVzranDIsoHKW|XzranDIsoHKW
24 eqid 1.K=1.K
25 24 1 6 2 3 dih1 KHLWHDIsoHKW1.K=V
26 25 adantr KHLWHXVDIsoHKW1.K=V
27 f1fn DIsoHKW:BaseK1-1LSubSpUDIsoHKWFnBaseK
28 16 27 syl KHLWHXVDIsoHKWFnBaseK
29 13 24 op1cl KOP1.KBaseK
30 20 29 syl KHLWHXV1.KBaseK
31 fnfvelrn DIsoHKWFnBaseK1.KBaseKDIsoHKW1.KranDIsoHKW
32 28 30 31 syl2anc KHLWHXVDIsoHKW1.KranDIsoHKW
33 26 32 eqeltrrd KHLWHXVVranDIsoHKW
34 simpr KHLWHXVXV
35 sseq2 z=VXzXV
36 35 elrab VzranDIsoHKW|XzVranDIsoHKWXV
37 33 34 36 sylanbrc KHLWHXVVzranDIsoHKW|Xz
38 37 ne0d KHLWHXVzranDIsoHKW|Xz
39 1 6 dihintcl KHLWHzranDIsoHKW|XzranDIsoHKWzranDIsoHKW|XzzranDIsoHKW|XzranDIsoHKW
40 21 23 38 39 syl12anc KHLWHXVzranDIsoHKW|XzranDIsoHKW
41 f1ocnvdm DIsoHKW:BaseK1-1 ontoranDIsoHKWzranDIsoHKW|XzranDIsoHKWDIsoHKW-1zranDIsoHKW|XzBaseK
42 18 40 41 syl2anc KHLWHXVDIsoHKW-1zranDIsoHKW|XzBaseK
43 13 8 opoccl KOPDIsoHKW-1zranDIsoHKW|XzBaseKocKDIsoHKW-1zranDIsoHKW|XzBaseK
44 20 42 43 syl2anc KHLWHXVocKDIsoHKW-1zranDIsoHKW|XzBaseK
45 f1ocnvfv1 DIsoHKW:BaseK1-1 ontoranDIsoHKWocKDIsoHKW-1zranDIsoHKW|XzBaseKDIsoHKW-1DIsoHKWocKDIsoHKW-1zranDIsoHKW|Xz=ocKDIsoHKW-1zranDIsoHKW|Xz
46 18 44 45 syl2anc KHLWHXVDIsoHKW-1DIsoHKWocKDIsoHKW-1zranDIsoHKW|Xz=ocKDIsoHKW-1zranDIsoHKW|Xz
47 12 46 eqtrd KHLWHXVDIsoHKW-1˙X=ocKDIsoHKW-1zranDIsoHKW|Xz
48 47 fveq2d KHLWHXVocKDIsoHKW-1˙X=ocKocKDIsoHKW-1zranDIsoHKW|Xz
49 13 8 opococ KOPDIsoHKW-1zranDIsoHKW|XzBaseKocKocKDIsoHKW-1zranDIsoHKW|Xz=DIsoHKW-1zranDIsoHKW|Xz
50 20 42 49 syl2anc KHLWHXVocKocKDIsoHKW-1zranDIsoHKW|Xz=DIsoHKW-1zranDIsoHKW|Xz
51 48 50 eqtrd KHLWHXVocKDIsoHKW-1˙X=DIsoHKW-1zranDIsoHKW|Xz
52 51 fveq2d KHLWHXVDIsoHKWocKDIsoHKW-1˙X=DIsoHKWDIsoHKW-1zranDIsoHKW|Xz
53 f1ocnvfv2 DIsoHKW:BaseK1-1 ontoranDIsoHKWzranDIsoHKW|XzranDIsoHKWDIsoHKWDIsoHKW-1zranDIsoHKW|Xz=zranDIsoHKW|Xz
54 18 40 53 syl2anc KHLWHXVDIsoHKWDIsoHKW-1zranDIsoHKW|Xz=zranDIsoHKW|Xz
55 10 52 54 3eqtrrd KHLWHXVzranDIsoHKW|Xz=˙˙X
56 5 55 sseqtrid KHLWHXVX˙˙X