Metamath Proof Explorer


Theorem dstfrvclim1

Description: The limit of the cumulative distribution function is one. (Contributed by Thierry Arnoux, 12-Feb-2017) (Revised by Thierry Arnoux, 11-Jul-2017)

Ref Expression
Hypotheses dstfrv.1 φPProb
dstfrv.2 φXRndVarP
dstfrv.3 φF=xPXRV/cx
Assertion dstfrvclim1 φF1

Proof

Step Hyp Ref Expression
1 dstfrv.1 φPProb
2 dstfrv.2 φXRndVarP
3 dstfrv.3 φF=xPXRV/cx
4 eqid TopOpen𝑠*𝑠0+∞=TopOpen𝑠*𝑠0+∞
5 domprobmeas PProbPmeasuresdomP
6 1 5 syl φPmeasuresdomP
7 1 adantr φiPProb
8 2 adantr φiXRndVarP
9 simpr φii
10 9 nnred φii
11 7 8 10 orvclteel φiXRV/cidomP
12 11 fmpttd φiXRV/ci:domP
13 1 adantr φnPProb
14 2 adantr φnXRndVarP
15 simpr φnn
16 15 nnred φnn
17 15 peano2nnd φnn+1
18 17 nnred φnn+1
19 16 lep1d φnnn+1
20 13 14 16 18 19 orvclteinc φnXRV/cnXRV/cn+1
21 eqidd φniXRV/ci=iXRV/ci
22 simpr φni=ni=n
23 22 oveq2d φni=nXRV/ci=XRV/cn
24 13 14 16 orvclteel φnXRV/cndomP
25 21 23 15 24 fvmptd φniXRV/cin=XRV/cn
26 simpr φni=n+1i=n+1
27 26 oveq2d φni=n+1XRV/ci=XRV/cn+1
28 13 14 18 orvclteel φnXRV/cn+1domP
29 21 27 17 28 fvmptd φniXRV/cin+1=XRV/cn+1
30 20 25 29 3sstr4d φniXRV/ciniXRV/cin+1
31 4 6 12 30 meascnbl φPiXRV/citTopOpen𝑠*𝑠0+∞PraniXRV/ci
32 measfn PmeasuresdomPPFndomP
33 dffn5 PFndomPP=adomPPa
34 33 biimpi PFndomPP=adomPPa
35 6 32 34 3syl φP=adomPPa
36 prob01 PProbadomPPa01
37 1 36 sylan φadomPPa01
38 35 37 fmpt3d φP:domP01
39 fco P:domP01iXRV/ci:domPPiXRV/ci:01
40 38 12 39 syl2anc φPiXRV/ci:01
41 1 2 dstfrvunirn φraniXRV/ci=domP
42 1 unveldomd φdomPdomP
43 41 42 eqeltrd φraniXRV/cidomP
44 prob01 PProbraniXRV/cidomPPraniXRV/ci01
45 1 43 44 syl2anc φPraniXRV/ci01
46 0xr 0*
47 pnfxr +∞*
48 0le0 00
49 1re 1
50 ltpnf 11<+∞
51 49 50 ax-mp 1<+∞
52 iccssico 0*+∞*001<+∞010+∞
53 46 47 48 51 52 mp4an 010+∞
54 4 40 45 53 lmlimxrge0 φPiXRV/citTopOpen𝑠*𝑠0+∞PraniXRV/ciPiXRV/ciPraniXRV/ci
55 31 54 mpbid φPiXRV/ciPraniXRV/ci
56 eqidd φiXRV/ci=iXRV/ci
57 fveq2 a=XRV/ciPa=PXRV/ci
58 11 56 35 57 fmptco φPiXRV/ci=iPXRV/ci
59 3 adantr φiF=xPXRV/cx
60 simpr φix=ix=i
61 60 oveq2d φix=iXRV/cx=XRV/ci
62 61 fveq2d φix=iPXRV/cx=PXRV/ci
63 7 11 probvalrnd φiPXRV/ci
64 59 62 10 63 fvmptd φiFi=PXRV/ci
65 64 mpteq2dva φiFi=iPXRV/ci
66 58 65 eqtr4d φPiXRV/ci=iFi
67 41 fveq2d φPraniXRV/ci=PdomP
68 probtot PProbPdomP=1
69 1 68 syl φPdomP=1
70 67 69 eqtrd φPraniXRV/ci=1
71 55 66 70 3brtr3d φiFi1
72 1z 1
73 reex V
74 73 mptex xPXRV/cxV
75 3 74 eqeltrdi φFV
76 nnuz =1
77 eqid iFi=iFi
78 76 77 climmpt 1FVF1iFi1
79 72 75 78 sylancr φF1iFi1
80 71 79 mpbird φF1