Metamath Proof Explorer


Theorem dvef

Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014) (Proof shortened by Mario Carneiro, 10-Feb-2015)

Ref Expression
Assertion dvef Dexp=exp

Proof

Step Hyp Ref Expression
1 dvfcn exp:domexp
2 dvbsss domexp
3 subcl zxzx
4 3 ancoms xzzx
5 efadd xzxex+z-x=exezx
6 4 5 syldan xzex+z-x=exezx
7 pncan3 xzx+z-x=z
8 7 fveq2d xzex+z-x=ez
9 6 8 eqtr3d xzexezx=ez
10 9 mpteq2dva xzexezx=zez
11 cnex V
12 11 a1i xV
13 fvexd xzexV
14 fvexd xzezxV
15 fconstmpt ×ex=zex
16 15 a1i x×ex=zex
17 eqidd xzezx=zezx
18 12 13 14 16 17 offval2 x×ex×fzezx=zexezx
19 eff exp:
20 19 a1i xexp:
21 20 feqmptd xexp=zez
22 10 18 21 3eqtr4d x×ex×fzezx=exp
23 22 oveq2d xD×ex×fzezx=Dexp
24 efcl xex
25 fconstg ex×ex:ex
26 24 25 syl x×ex:ex
27 24 snssd xex
28 26 27 fssd x×ex:
29 ssidd x
30 efcl zxezx
31 4 30 syl xzezx
32 31 fmpttd xzezx:
33 0cnd x0
34 1cnd x1
35 c0ex 0V
36 35 snid 00
37 opelxpi x00x0×0
38 36 37 mpan2 xx0×0
39 dvconst exD×ex=×0
40 24 39 syl xD×ex=×0
41 38 40 eleqtrrd xx0×ex
42 df-br x×ex0x0×ex
43 41 42 sylibr xx×ex0
44 20 4 cofmpt xexpzzx=zezx
45 44 oveq2d xDexpzzx=dzezxdz
46 4 fmpttd xzzx:
47 oveq1 z=xzx=xx
48 eqid zzx=zzx
49 ovex xxV
50 47 48 49 fvmpt xzzxx=xx
51 subid xxx=0
52 50 51 eqtrd xzzxx=0
53 dveflem 0exp1
54 52 53 eqbrtrdi xzzxxexp1
55 1ex 1V
56 55 snid 11
57 opelxpi x11x1×1
58 56 57 mpan2 xx1×1
59 cnelprrecn
60 59 a1i x
61 simpr xzz
62 1cnd xz1
63 60 dvmptid xdzzdz=z1
64 simpl xzx
65 0cnd xz0
66 id xx
67 60 66 dvmptc xdzxdz=z0
68 60 61 62 63 64 65 67 dvmptsub xdzzxdz=z10
69 1m0e1 10=1
70 69 mpteq2i z10=z1
71 fconstmpt ×1=z1
72 70 71 eqtr4i z10=×1
73 68 72 eqtrdi xdzzxdz=×1
74 58 73 eleqtrrd xx1dzzxdz
75 df-br xdzzxdz1x1dzzxdz
76 74 75 sylibr xxdzzxdz1
77 eqid TopOpenfld=TopOpenfld
78 20 29 46 29 29 29 34 34 54 76 77 dvcobr xxexpzzx11
79 1t1e1 11=1
80 78 79 breqtrdi xxexpzzx1
81 45 80 breqdi xxdzezxdz1
82 28 29 32 29 29 33 34 43 81 77 dvmulbr xx×ex×fzezx0zezxx+1×exx
83 32 66 ffvelcdmd xzezxx
84 83 mul02d x0zezxx=0
85 fvex exV
86 85 fvconst2 x×exx=ex
87 86 oveq2d x1×exx=1ex
88 24 mullidd x1ex=ex
89 87 88 eqtrd x1×exx=ex
90 84 89 oveq12d x0zezxx+1×exx=0+ex
91 24 addlidd x0+ex=ex
92 90 91 eqtrd x0zezxx+1×exx=ex
93 82 92 breqtrd xx×ex×fzezxex
94 23 93 breqdi xxexpex
95 vex xV
96 95 85 breldm xexpexxdomexp
97 94 96 syl xxdomexp
98 97 ssriv domexp
99 2 98 eqssi domexp=
100 99 feq2i exp:domexpexp:
101 1 100 mpbi exp:
102 101 a1i exp:
103 102 feqmptd Dexp=xexpx
104 ffun exp:domexpFunexp
105 1 104 ax-mp Funexp
106 funbrfv Funexpxexpexexpx=ex
107 105 94 106 mpsyl xexpx=ex
108 107 mpteq2ia xexpx=xex
109 103 108 eqtrdi Dexp=xex
110 19 a1i exp:
111 110 feqmptd exp=xex
112 109 111 eqtr4d Dexp=exp
113 112 mptru Dexp=exp