Metamath Proof Explorer


Theorem dyadmax

Description: Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypothesis dyadmbl.1 F=x,y0x2yx+12y
Assertion dyadmax AranFAzAwA.z.wz=w

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F=x,y0x2yx+12y
2 ltweuz <We0
3 2 a1i AranFA<We0
4 nn0ex 0V
5 4 rabex n0|zAaz=aFnV
6 5 a1i AranFAn0|zAaz=aFnV
7 ssrab2 n0|zAaz=aFn0
8 nn0uz 0=0
9 7 8 sseqtri n0|zAaz=aFn0
10 9 a1i AranFAn0|zAaz=aFn0
11 id AA
12 1 dyadf F:×02
13 ffn F:×02FFn×0
14 ovelrn FFn×0zranFan0z=aFn
15 12 13 14 mp2b zranFan0z=aFn
16 rexcom an0z=aFnn0az=aFn
17 15 16 sylbb zranFn0az=aFn
18 17 rgen zranFn0az=aFn
19 ssralv AranFzranFn0az=aFnzAn0az=aFn
20 18 19 mpi AranFzAn0az=aFn
21 r19.2z AzAn0az=aFnzAn0az=aFn
22 11 20 21 syl2anr AranFAzAn0az=aFn
23 rexcom zAn0az=aFnn0zAaz=aFn
24 22 23 sylib AranFAn0zAaz=aFn
25 rabn0 n0|zAaz=aFnn0zAaz=aFn
26 24 25 sylibr AranFAn0|zAaz=aFn
27 wereu <We0n0|zAaz=aFnVn0|zAaz=aFn0n0|zAaz=aFn∃!cn0|zAaz=aFndn0|zAaz=aFn¬d<c
28 3 6 10 26 27 syl13anc AranFA∃!cn0|zAaz=aFndn0|zAaz=aFn¬d<c
29 reurex ∃!cn0|zAaz=aFndn0|zAaz=aFn¬d<ccn0|zAaz=aFndn0|zAaz=aFn¬d<c
30 28 29 syl AranFAcn0|zAaz=aFndn0|zAaz=aFn¬d<c
31 oveq2 n=caFn=aFc
32 31 eqeq2d n=cz=aFnz=aFc
33 32 2rexbidv n=czAaz=aFnzAaz=aFc
34 33 elrab cn0|zAaz=aFnc0zAaz=aFc
35 eqeq1 z=wz=aFnw=aFn
36 oveq1 a=baFn=bFn
37 36 eqeq2d a=bw=aFnw=bFn
38 35 37 cbvrex2vw zAaz=aFnwAbw=bFn
39 oveq2 n=dbFn=bFd
40 39 eqeq2d n=dw=bFnw=bFd
41 40 2rexbidv n=dwAbw=bFnwAbw=bFd
42 38 41 bitrid n=dzAaz=aFnwAbw=bFd
43 42 ralrab dn0|zAaz=aFn¬d<cd0wAbw=bFd¬d<c
44 r19.23v wAbw=bFd¬d<cwAbw=bFd¬d<c
45 44 ralbii d0wAbw=bFd¬d<cd0wAbw=bFd¬d<c
46 ralcom d0wAbw=bFd¬d<cwAd0bw=bFd¬d<c
47 45 46 bitr3i d0wAbw=bFd¬d<cwAd0bw=bFd¬d<c
48 simplll AranFAc0zAaAranF
49 48 sselda AranFAc0zAawAwranF
50 ovelrn FFn×0wranFbd0w=bFd
51 12 13 50 mp2b wranFbd0w=bFd
52 49 51 sylib AranFAc0zAawAbd0w=bFd
53 rexcom bd0w=bFdd0bw=bFd
54 r19.29 d0bw=bFd¬d<cd0bw=bFdd0bw=bFd¬d<cbw=bFd
55 54 expcom d0bw=bFdd0bw=bFd¬d<cd0bw=bFd¬d<cbw=bFd
56 53 55 sylbi bd0w=bFdd0bw=bFd¬d<cd0bw=bFd¬d<cbw=bFd
57 52 56 syl AranFAc0zAawAd0bw=bFd¬d<cd0bw=bFd¬d<cbw=bFd
58 simplrr AranFAc0zAawAa
59 58 ad2antrr AranFAc0zAawAd0b¬d<c.aFc.bFda
60 simplrr AranFAc0zAawAd0b¬d<c.aFc.bFdb
61 simp-5r AranFAc0zAawAd0b¬d<c.aFc.bFdc0
62 simplrl AranFAc0zAawAd0b¬d<c.aFc.bFdd0
63 simprl AranFAc0zAawAd0b¬d<c.aFc.bFd¬d<c
64 simprr AranFAc0zAawAd0b¬d<c.aFc.bFd.aFc.bFd
65 1 59 60 61 62 63 64 dyadmaxlem AranFAc0zAawAd0b¬d<c.aFc.bFda=bc=d
66 oveq12 a=bc=daFc=bFd
67 65 66 syl AranFAc0zAawAd0b¬d<c.aFc.bFdaFc=bFd
68 67 exp32 AranFAc0zAawAd0b¬d<c.aFc.bFdaFc=bFd
69 fveq2 w=bFd.w=.bFd
70 69 sseq2d w=bFd.aFc.w.aFc.bFd
71 eqeq2 w=bFdaFc=waFc=bFd
72 70 71 imbi12d w=bFd.aFc.waFc=w.aFc.bFdaFc=bFd
73 72 imbi2d w=bFd¬d<c.aFc.waFc=w¬d<c.aFc.bFdaFc=bFd
74 68 73 syl5ibrcom AranFAc0zAawAd0bw=bFd¬d<c.aFc.waFc=w
75 74 anassrs AranFAc0zAawAd0bw=bFd¬d<c.aFc.waFc=w
76 75 rexlimdva AranFAc0zAawAd0bw=bFd¬d<c.aFc.waFc=w
77 76 a2d AranFAc0zAawAd0bw=bFd¬d<cbw=bFd.aFc.waFc=w
78 77 impd AranFAc0zAawAd0bw=bFd¬d<cbw=bFd.aFc.waFc=w
79 78 rexlimdva AranFAc0zAawAd0bw=bFd¬d<cbw=bFd.aFc.waFc=w
80 57 79 syld AranFAc0zAawAd0bw=bFd¬d<c.aFc.waFc=w
81 80 ralimdva AranFAc0zAawAd0bw=bFd¬d<cwA.aFc.waFc=w
82 47 81 biimtrid AranFAc0zAad0wAbw=bFd¬d<cwA.aFc.waFc=w
83 82 imp AranFAc0zAad0wAbw=bFd¬d<cwA.aFc.waFc=w
84 83 an32s AranFAc0d0wAbw=bFd¬d<czAawA.aFc.waFc=w
85 fveq2 z=aFc.z=.aFc
86 85 sseq1d z=aFc.z.w.aFc.w
87 eqeq1 z=aFcz=waFc=w
88 86 87 imbi12d z=aFc.z.wz=w.aFc.waFc=w
89 88 ralbidv z=aFcwA.z.wz=wwA.aFc.waFc=w
90 84 89 syl5ibrcom AranFAc0d0wAbw=bFd¬d<czAaz=aFcwA.z.wz=w
91 90 anassrs AranFAc0d0wAbw=bFd¬d<czAaz=aFcwA.z.wz=w
92 91 rexlimdva AranFAc0d0wAbw=bFd¬d<czAaz=aFcwA.z.wz=w
93 92 reximdva AranFAc0d0wAbw=bFd¬d<czAaz=aFczAwA.z.wz=w
94 93 ex AranFAc0d0wAbw=bFd¬d<czAaz=aFczAwA.z.wz=w
95 43 94 biimtrid AranFAc0dn0|zAaz=aFn¬d<czAaz=aFczAwA.z.wz=w
96 95 com23 AranFAc0zAaz=aFcdn0|zAaz=aFn¬d<czAwA.z.wz=w
97 96 expimpd AranFAc0zAaz=aFcdn0|zAaz=aFn¬d<czAwA.z.wz=w
98 34 97 biimtrid AranFAcn0|zAaz=aFndn0|zAaz=aFn¬d<czAwA.z.wz=w
99 98 rexlimdv AranFAcn0|zAaz=aFndn0|zAaz=aFn¬d<czAwA.z.wz=w
100 30 99 mpd AranFAzAwA.z.wz=w