Metamath Proof Explorer


Theorem efcvx

Description: The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion efcvx ABA<BT01eTA+1TB<TeA+1TeB

Proof

Step Hyp Ref Expression
1 simpl1 ABA<BT01A
2 simpl2 ABA<BT01B
3 simpl3 ABA<BT01A<B
4 reeff1o exp:1-1 onto+
5 f1of exp:1-1 onto+exp:+
6 4 5 ax-mp exp:+
7 rpssre +
8 fss exp:++exp:
9 6 7 8 mp2an exp:
10 iccssre ABAB
11 1 2 10 syl2anc ABA<BT01AB
12 fssres2 exp:ABexpAB:AB
13 9 11 12 sylancr ABA<BT01expAB:AB
14 ax-resscn
15 11 14 sstrdi ABA<BT01AB
16 efcn exp:cn
17 rescncf ABexp:cnexpAB:ABcn
18 15 16 17 mpisyl ABA<BT01expAB:ABcn
19 cncfcdm expAB:ABcnexpAB:ABcnexpAB:AB
20 14 18 19 sylancr ABA<BT01expAB:ABcnexpAB:AB
21 13 20 mpbird ABA<BT01expAB:ABcn
22 reefiso expIsom<,<+
23 22 a1i ABA<BT01expIsom<,<+
24 ioossre AB
25 24 a1i ABA<BT01AB
26 eqidd ABA<BT01expAB=expAB
27 isores3 expIsom<,<+ABexpAB=expABexpABIsom<,<ABexpAB
28 23 25 26 27 syl3anc ABA<BT01expABIsom<,<ABexpAB
29 ssid
30 fss exp:exp:
31 9 14 30 mp2an exp:
32 eqid TopOpenfld=TopOpenfld
33 32 tgioo2 topGenran.=TopOpenfld𝑡
34 32 33 dvres exp:ABDexpAB=expinttopGenran.AB
35 14 31 34 mpanl12 ABDexpAB=expinttopGenran.AB
36 29 11 35 sylancr ABA<BT01DexpAB=expinttopGenran.AB
37 11 resabs1d ABA<BT01expAB=expAB
38 37 oveq2d ABA<BT01DexpAB=DexpAB
39 reelprrecn
40 eff exp:
41 ssid
42 dvef Dexp=exp
43 42 dmeqi domexp=domexp
44 40 fdmi domexp=
45 43 44 eqtri domexp=
46 14 45 sseqtrri domexp
47 dvres3 exp:domexpDexp=exp
48 39 40 41 46 47 mp4an Dexp=exp
49 42 reseq1i exp=exp
50 48 49 eqtri Dexp=exp
51 50 a1i ABA<BT01Dexp=exp
52 iccntr ABinttopGenran.AB=AB
53 1 2 52 syl2anc ABA<BT01inttopGenran.AB=AB
54 51 53 reseq12d ABA<BT01expinttopGenran.AB=expAB
55 36 38 54 3eqtr3d ABA<BT01DexpAB=expAB
56 isoeq1 DexpAB=expABexpABIsom<,<ABexpABexpABIsom<,<ABexpAB
57 55 56 syl ABA<BT01expABIsom<,<ABexpABexpABIsom<,<ABexpAB
58 28 57 mpbird ABA<BT01expABIsom<,<ABexpAB
59 simpr ABA<BT01T01
60 eqid TA+1TB=TA+1TB
61 1 2 3 21 58 59 60 dvcvx ABA<BT01expABTA+1TB<TexpABA+1TexpABB
62 ax-1cn 1
63 ioossre 01
64 63 59 sselid ABA<BT01T
65 64 recnd ABA<BT01T
66 nncan 1T11T=T
67 62 65 66 sylancr ABA<BT0111T=T
68 67 oveq1d ABA<BT0111TA=TA
69 68 oveq1d ABA<BT0111TA+1TB=TA+1TB
70 ioossicc 0101
71 70 59 sselid ABA<BT01T01
72 iirev T011T01
73 71 72 syl ABA<BT011T01
74 lincmb01cmp ABA<B1T0111TA+1TBAB
75 73 74 syldan ABA<BT0111TA+1TBAB
76 69 75 eqeltrrd ABA<BT01TA+1TBAB
77 76 fvresd ABA<BT01expABTA+1TB=eTA+1TB
78 1 rexrd ABA<BT01A*
79 2 rexrd ABA<BT01B*
80 1 2 3 ltled ABA<BT01AB
81 lbicc2 A*B*ABAAB
82 78 79 80 81 syl3anc ABA<BT01AAB
83 82 fvresd ABA<BT01expABA=eA
84 83 oveq2d ABA<BT01TexpABA=TeA
85 ubicc2 A*B*ABBAB
86 78 79 80 85 syl3anc ABA<BT01BAB
87 86 fvresd ABA<BT01expABB=eB
88 87 oveq2d ABA<BT011TexpABB=1TeB
89 84 88 oveq12d ABA<BT01TexpABA+1TexpABB=TeA+1TeB
90 61 77 89 3brtr3d ABA<BT01eTA+1TB<TeA+1TeB