Metamath Proof Explorer


Theorem efginvrel2

Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
Assertion efginvrel2 AWA++MreverseA˙

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 fviss IWordI×2𝑜WordI×2𝑜
6 1 5 eqsstri WWordI×2𝑜
7 6 sseli AWAWordI×2𝑜
8 id c=c=
9 fveq2 c=reversec=reverse
10 rev0 reverse=
11 9 10 eqtrdi c=reversec=
12 11 coeq2d c=Mreversec=M
13 co02 M=
14 12 13 eqtrdi c=Mreversec=
15 8 14 oveq12d c=c++Mreversec=++
16 15 breq1d c=c++Mreversec˙++˙
17 16 imbi2d c=AWc++Mreversec˙AW++˙
18 id c=ac=a
19 fveq2 c=areversec=reversea
20 19 coeq2d c=aMreversec=Mreversea
21 18 20 oveq12d c=ac++Mreversec=a++Mreversea
22 21 breq1d c=ac++Mreversec˙a++Mreversea˙
23 22 imbi2d c=aAWc++Mreversec˙AWa++Mreversea˙
24 id c=a++⟨“b”⟩c=a++⟨“b”⟩
25 fveq2 c=a++⟨“b”⟩reversec=reversea++⟨“b”⟩
26 25 coeq2d c=a++⟨“b”⟩Mreversec=Mreversea++⟨“b”⟩
27 24 26 oveq12d c=a++⟨“b”⟩c++Mreversec=a++⟨“b”⟩++Mreversea++⟨“b”⟩
28 27 breq1d c=a++⟨“b”⟩c++Mreversec˙a++⟨“b”⟩++Mreversea++⟨“b”⟩˙
29 28 imbi2d c=a++⟨“b”⟩AWc++Mreversec˙AWa++⟨“b”⟩++Mreversea++⟨“b”⟩˙
30 id c=Ac=A
31 fveq2 c=Areversec=reverseA
32 31 coeq2d c=AMreversec=MreverseA
33 30 32 oveq12d c=Ac++Mreversec=A++MreverseA
34 33 breq1d c=Ac++Mreversec˙A++MreverseA˙
35 34 imbi2d c=AAWc++Mreversec˙AWA++MreverseA˙
36 ccatidid ++=
37 1 2 efger ˙ErW
38 37 a1i AW˙ErW
39 wrd0 WordI×2𝑜
40 1 efgrcl AWIVW=WordI×2𝑜
41 40 simprd AWW=WordI×2𝑜
42 39 41 eleqtrrid AWW
43 38 42 erref AW˙
44 36 43 eqbrtrid AW++˙
45 37 a1i AWaWordI×2𝑜bI×2𝑜˙ErW
46 simprl AWaWordI×2𝑜bI×2𝑜aWordI×2𝑜
47 revcl aWordI×2𝑜reverseaWordI×2𝑜
48 47 ad2antrl AWaWordI×2𝑜bI×2𝑜reverseaWordI×2𝑜
49 3 efgmf M:I×2𝑜I×2𝑜
50 wrdco reverseaWordI×2𝑜M:I×2𝑜I×2𝑜MreverseaWordI×2𝑜
51 48 49 50 sylancl AWaWordI×2𝑜bI×2𝑜MreverseaWordI×2𝑜
52 ccatcl aWordI×2𝑜MreverseaWordI×2𝑜a++MreverseaWordI×2𝑜
53 46 51 52 syl2anc AWaWordI×2𝑜bI×2𝑜a++MreverseaWordI×2𝑜
54 41 adantr AWaWordI×2𝑜bI×2𝑜W=WordI×2𝑜
55 53 54 eleqtrrd AWaWordI×2𝑜bI×2𝑜a++MreverseaW
56 lencl aWordI×2𝑜a0
57 56 ad2antrl AWaWordI×2𝑜bI×2𝑜a0
58 nn0uz 0=0
59 57 58 eleqtrdi AWaWordI×2𝑜bI×2𝑜a0
60 ccatlen aWordI×2𝑜MreverseaWordI×2𝑜a++Mreversea=a+Mreversea
61 46 51 60 syl2anc AWaWordI×2𝑜bI×2𝑜a++Mreversea=a+Mreversea
62 57 nn0zd AWaWordI×2𝑜bI×2𝑜a
63 62 uzidd AWaWordI×2𝑜bI×2𝑜aa
64 lencl MreverseaWordI×2𝑜Mreversea0
65 51 64 syl AWaWordI×2𝑜bI×2𝑜Mreversea0
66 uzaddcl aaMreversea0a+Mreverseaa
67 63 65 66 syl2anc AWaWordI×2𝑜bI×2𝑜a+Mreverseaa
68 61 67 eqeltrd AWaWordI×2𝑜bI×2𝑜a++Mreverseaa
69 elfzuzb a0a++Mreverseaa0a++Mreverseaa
70 59 68 69 sylanbrc AWaWordI×2𝑜bI×2𝑜a0a++Mreversea
71 simprr AWaWordI×2𝑜bI×2𝑜bI×2𝑜
72 1 2 3 4 efgtval a++MreverseaWa0a++MreverseabI×2𝑜aTa++Mreverseab=a++Mreverseaspliceaa⟨“bMb”⟩
73 55 70 71 72 syl3anc AWaWordI×2𝑜bI×2𝑜aTa++Mreverseab=a++Mreverseaspliceaa⟨“bMb”⟩
74 39 a1i AWaWordI×2𝑜bI×2𝑜WordI×2𝑜
75 49 ffvelcdmi bI×2𝑜MbI×2𝑜
76 75 ad2antll AWaWordI×2𝑜bI×2𝑜MbI×2𝑜
77 71 76 s2cld AWaWordI×2𝑜bI×2𝑜⟨“bMb”⟩WordI×2𝑜
78 ccatrid aWordI×2𝑜a++=a
79 78 ad2antrl AWaWordI×2𝑜bI×2𝑜a++=a
80 79 eqcomd AWaWordI×2𝑜bI×2𝑜a=a++
81 80 oveq1d AWaWordI×2𝑜bI×2𝑜a++Mreversea=a++++Mreversea
82 eqidd AWaWordI×2𝑜bI×2𝑜a=a
83 hash0 =0
84 83 oveq2i a+=a+0
85 57 nn0cnd AWaWordI×2𝑜bI×2𝑜a
86 85 addridd AWaWordI×2𝑜bI×2𝑜a+0=a
87 84 86 eqtr2id AWaWordI×2𝑜bI×2𝑜a=a+
88 46 74 51 77 81 82 87 splval2 AWaWordI×2𝑜bI×2𝑜a++Mreverseaspliceaa⟨“bMb”⟩=a++⟨“bMb”⟩++Mreversea
89 71 s1cld AWaWordI×2𝑜bI×2𝑜⟨“b”⟩WordI×2𝑜
90 revccat aWordI×2𝑜⟨“b”⟩WordI×2𝑜reversea++⟨“b”⟩=reverse⟨“b”⟩++reversea
91 46 89 90 syl2anc AWaWordI×2𝑜bI×2𝑜reversea++⟨“b”⟩=reverse⟨“b”⟩++reversea
92 revs1 reverse⟨“b”⟩=⟨“b”⟩
93 92 oveq1i reverse⟨“b”⟩++reversea=⟨“b”⟩++reversea
94 91 93 eqtrdi AWaWordI×2𝑜bI×2𝑜reversea++⟨“b”⟩=⟨“b”⟩++reversea
95 94 coeq2d AWaWordI×2𝑜bI×2𝑜Mreversea++⟨“b”⟩=M⟨“b”⟩++reversea
96 49 a1i AWaWordI×2𝑜bI×2𝑜M:I×2𝑜I×2𝑜
97 ccatco ⟨“b”⟩WordI×2𝑜reverseaWordI×2𝑜M:I×2𝑜I×2𝑜M⟨“b”⟩++reversea=M⟨“b”⟩++Mreversea
98 89 48 96 97 syl3anc AWaWordI×2𝑜bI×2𝑜M⟨“b”⟩++reversea=M⟨“b”⟩++Mreversea
99 s1co bI×2𝑜M:I×2𝑜I×2𝑜M⟨“b”⟩=⟨“Mb”⟩
100 71 49 99 sylancl AWaWordI×2𝑜bI×2𝑜M⟨“b”⟩=⟨“Mb”⟩
101 100 oveq1d AWaWordI×2𝑜bI×2𝑜M⟨“b”⟩++Mreversea=⟨“Mb”⟩++Mreversea
102 95 98 101 3eqtrd AWaWordI×2𝑜bI×2𝑜Mreversea++⟨“b”⟩=⟨“Mb”⟩++Mreversea
103 102 oveq2d AWaWordI×2𝑜bI×2𝑜a++⟨“b”⟩++Mreversea++⟨“b”⟩=a++⟨“b”⟩++⟨“Mb”⟩++Mreversea
104 ccatcl aWordI×2𝑜⟨“b”⟩WordI×2𝑜a++⟨“b”⟩WordI×2𝑜
105 46 89 104 syl2anc AWaWordI×2𝑜bI×2𝑜a++⟨“b”⟩WordI×2𝑜
106 76 s1cld AWaWordI×2𝑜bI×2𝑜⟨“Mb”⟩WordI×2𝑜
107 ccatass a++⟨“b”⟩WordI×2𝑜⟨“Mb”⟩WordI×2𝑜MreverseaWordI×2𝑜a++⟨“b”⟩++⟨“Mb”⟩++Mreversea=a++⟨“b”⟩++⟨“Mb”⟩++Mreversea
108 105 106 51 107 syl3anc AWaWordI×2𝑜bI×2𝑜a++⟨“b”⟩++⟨“Mb”⟩++Mreversea=a++⟨“b”⟩++⟨“Mb”⟩++Mreversea
109 ccatass aWordI×2𝑜⟨“b”⟩WordI×2𝑜⟨“Mb”⟩WordI×2𝑜a++⟨“b”⟩++⟨“Mb”⟩=a++⟨“b”⟩++⟨“Mb”⟩
110 46 89 106 109 syl3anc AWaWordI×2𝑜bI×2𝑜a++⟨“b”⟩++⟨“Mb”⟩=a++⟨“b”⟩++⟨“Mb”⟩
111 df-s2 ⟨“bMb”⟩=⟨“b”⟩++⟨“Mb”⟩
112 111 oveq2i a++⟨“bMb”⟩=a++⟨“b”⟩++⟨“Mb”⟩
113 110 112 eqtr4di AWaWordI×2𝑜bI×2𝑜a++⟨“b”⟩++⟨“Mb”⟩=a++⟨“bMb”⟩
114 113 oveq1d AWaWordI×2𝑜bI×2𝑜a++⟨“b”⟩++⟨“Mb”⟩++Mreversea=a++⟨“bMb”⟩++Mreversea
115 103 108 114 3eqtr2rd AWaWordI×2𝑜bI×2𝑜a++⟨“bMb”⟩++Mreversea=a++⟨“b”⟩++Mreversea++⟨“b”⟩
116 73 88 115 3eqtrd AWaWordI×2𝑜bI×2𝑜aTa++Mreverseab=a++⟨“b”⟩++Mreversea++⟨“b”⟩
117 1 2 3 4 efgtf a++MreverseaWTa++Mreversea=m0a++Mreversea,uI×2𝑜a++Mreverseasplicemm⟨“uMu”⟩Ta++Mreversea:0a++Mreversea×I×2𝑜W
118 117 simprd a++MreverseaWTa++Mreversea:0a++Mreversea×I×2𝑜W
119 55 118 syl AWaWordI×2𝑜bI×2𝑜Ta++Mreversea:0a++Mreversea×I×2𝑜W
120 119 ffnd AWaWordI×2𝑜bI×2𝑜Ta++MreverseaFn0a++Mreversea×I×2𝑜
121 fnovrn Ta++MreverseaFn0a++Mreversea×I×2𝑜a0a++MreverseabI×2𝑜aTa++MreverseabranTa++Mreversea
122 120 70 71 121 syl3anc AWaWordI×2𝑜bI×2𝑜aTa++MreverseabranTa++Mreversea
123 116 122 eqeltrrd AWaWordI×2𝑜bI×2𝑜a++⟨“b”⟩++Mreversea++⟨“b”⟩ranTa++Mreversea
124 1 2 3 4 efgi2 a++MreverseaWa++⟨“b”⟩++Mreversea++⟨“b”⟩ranTa++Mreverseaa++Mreversea˙a++⟨“b”⟩++Mreversea++⟨“b”⟩
125 55 123 124 syl2anc AWaWordI×2𝑜bI×2𝑜a++Mreversea˙a++⟨“b”⟩++Mreversea++⟨“b”⟩
126 45 125 ersym AWaWordI×2𝑜bI×2𝑜a++⟨“b”⟩++Mreversea++⟨“b”⟩˙a++Mreversea
127 45 ertr AWaWordI×2𝑜bI×2𝑜a++⟨“b”⟩++Mreversea++⟨“b”⟩˙a++Mreverseaa++Mreversea˙a++⟨“b”⟩++Mreversea++⟨“b”⟩˙
128 126 127 mpand AWaWordI×2𝑜bI×2𝑜a++Mreversea˙a++⟨“b”⟩++Mreversea++⟨“b”⟩˙
129 128 expcom aWordI×2𝑜bI×2𝑜AWa++Mreversea˙a++⟨“b”⟩++Mreversea++⟨“b”⟩˙
130 129 a2d aWordI×2𝑜bI×2𝑜AWa++Mreversea˙AWa++⟨“b”⟩++Mreversea++⟨“b”⟩˙
131 17 23 29 35 44 130 wrdind AWordI×2𝑜AWA++MreverseA˙
132 7 131 mpcom AWA++MreverseA˙