Description: Elementhood in the set of nonzero algebraic numbers: when A is nonzero, the polynomial f can be chosen with a nonzero constant term. (Contributed by Glauco Siliprandi, 5-Apr-2020) (Proof shortened by AV, 1-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elaa2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aasscn | |
|
2 | eldifi | |
|
3 | 1 2 | sselid | |
4 | elaa | |
|
5 | 2 4 | sylib | |
6 | 5 | simprd | |
7 | 2 | 3ad2ant1 | |
8 | eldifsni | |
|
9 | 8 | 3ad2ant1 | |
10 | eldifi | |
|
11 | 10 | 3ad2ant2 | |
12 | eldifsni | |
|
13 | 12 | 3ad2ant2 | |
14 | simp3 | |
|
15 | fveq2 | |
|
16 | 15 | neeq1d | |
17 | 16 | cbvrabv | |
18 | 17 | infeq1i | |
19 | fvoveq1 | |
|
20 | 19 | cbvmptv | |
21 | eqid | |
|
22 | 7 9 11 13 14 18 20 21 | elaa2lem | |
23 | 22 | rexlimdv3a | |
24 | 6 23 | mpd | |
25 | 3 24 | jca | |
26 | simpl | |
|
27 | fveq2 | |
|
28 | coe0 | |
|
29 | 27 28 | eqtrdi | |
30 | 29 | fveq1d | |
31 | 0nn0 | |
|
32 | fvconst2g | |
|
33 | 31 31 32 | mp2an | |
34 | 30 33 | eqtrdi | |
35 | 34 | adantl | |
36 | neneq | |
|
37 | 36 | ad2antlr | |
38 | 35 37 | pm2.65da | |
39 | velsn | |
|
40 | 38 39 | sylnibr | |
41 | 26 40 | eldifd | |
42 | 41 | adantrr | |
43 | simprr | |
|
44 | 42 43 | jca | |
45 | 44 | reximi2 | |
46 | 45 | anim2i | |
47 | elaa | |
|
48 | 46 47 | sylibr | |
49 | simpr | |
|
50 | nfv | |
|
51 | nfre1 | |
|
52 | 50 51 | nfan | |
53 | nfv | |
|
54 | simpl3r | |
|
55 | fveq2 | |
|
56 | eqid | |
|
57 | 56 | coefv0 | |
58 | 55 57 | sylan9eqr | |
59 | 58 | adantlr | |
60 | simplr | |
|
61 | 59 60 | eqnetrd | |
62 | 61 | neneqd | |
63 | 62 | adantlrr | |
64 | 63 | 3adantl1 | |
65 | 54 64 | pm2.65da | |
66 | elsng | |
|
67 | 66 | biimpa | |
68 | 67 | 3ad2antl1 | |
69 | 65 68 | mtand | |
70 | 69 | 3exp | |
71 | 70 | adantr | |
72 | 52 53 71 | rexlimd | |
73 | 49 72 | mpd | |
74 | 48 73 | eldifd | |
75 | 25 74 | impbii | |