Metamath Proof Explorer


Theorem elaa2

Description: Elementhood in the set of nonzero algebraic numbers: when A is nonzero, the polynomial f can be chosen with a nonzero constant term. (Contributed by Glauco Siliprandi, 5-Apr-2020) (Proof shortened by AV, 1-Oct-2020)

Ref Expression
Assertion elaa2 A𝔸0AfPolycoefff00fA=0

Proof

Step Hyp Ref Expression
1 aasscn 𝔸
2 eldifi A𝔸0A𝔸
3 1 2 sselid A𝔸0A
4 elaa A𝔸AgPoly0𝑝gA=0
5 2 4 sylib A𝔸0AgPoly0𝑝gA=0
6 5 simprd A𝔸0gPoly0𝑝gA=0
7 2 3ad2ant1 A𝔸0gPoly0𝑝gA=0A𝔸
8 eldifsni A𝔸0A0
9 8 3ad2ant1 A𝔸0gPoly0𝑝gA=0A0
10 eldifi gPoly0𝑝gPoly
11 10 3ad2ant2 A𝔸0gPoly0𝑝gA=0gPoly
12 eldifsni gPoly0𝑝g0𝑝
13 12 3ad2ant2 A𝔸0gPoly0𝑝gA=0g0𝑝
14 simp3 A𝔸0gPoly0𝑝gA=0gA=0
15 fveq2 m=ncoeffgm=coeffgn
16 15 neeq1d m=ncoeffgm0coeffgn0
17 16 cbvrabv m0|coeffgm0=n0|coeffgn0
18 17 infeq1i supm0|coeffgm0<=supn0|coeffgn0<
19 fvoveq1 j=kcoeffgj+supm0|coeffgm0<=coeffgk+supm0|coeffgm0<
20 19 cbvmptv j0coeffgj+supm0|coeffgm0<=k0coeffgk+supm0|coeffgm0<
21 eqid zk=0deggsupm0|coeffgm0<j0coeffgj+supm0|coeffgm0<kzk=zk=0deggsupm0|coeffgm0<j0coeffgj+supm0|coeffgm0<kzk
22 7 9 11 13 14 18 20 21 elaa2lem A𝔸0gPoly0𝑝gA=0fPolycoefff00fA=0
23 22 rexlimdv3a A𝔸0gPoly0𝑝gA=0fPolycoefff00fA=0
24 6 23 mpd A𝔸0fPolycoefff00fA=0
25 3 24 jca A𝔸0AfPolycoefff00fA=0
26 simpl fPolycoefff00fPoly
27 fveq2 f=0𝑝coefff=coeff0𝑝
28 coe0 coeff0𝑝=0×0
29 27 28 eqtrdi f=0𝑝coefff=0×0
30 29 fveq1d f=0𝑝coefff0=0×00
31 0nn0 00
32 fvconst2g 00000×00=0
33 31 31 32 mp2an 0×00=0
34 30 33 eqtrdi f=0𝑝coefff0=0
35 34 adantl fPolycoefff00f=0𝑝coefff0=0
36 neneq coefff00¬coefff0=0
37 36 ad2antlr fPolycoefff00f=0𝑝¬coefff0=0
38 35 37 pm2.65da fPolycoefff00¬f=0𝑝
39 velsn f0𝑝f=0𝑝
40 38 39 sylnibr fPolycoefff00¬f0𝑝
41 26 40 eldifd fPolycoefff00fPoly0𝑝
42 41 adantrr fPolycoefff00fA=0fPoly0𝑝
43 simprr fPolycoefff00fA=0fA=0
44 42 43 jca fPolycoefff00fA=0fPoly0𝑝fA=0
45 44 reximi2 fPolycoefff00fA=0fPoly0𝑝fA=0
46 45 anim2i AfPolycoefff00fA=0AfPoly0𝑝fA=0
47 elaa A𝔸AfPoly0𝑝fA=0
48 46 47 sylibr AfPolycoefff00fA=0A𝔸
49 simpr AfPolycoefff00fA=0fPolycoefff00fA=0
50 nfv fA
51 nfre1 ffPolycoefff00fA=0
52 50 51 nfan fAfPolycoefff00fA=0
53 nfv f¬A0
54 simpl3r AfPolycoefff00fA=0A=0fA=0
55 fveq2 A=0fA=f0
56 eqid coefff=coefff
57 56 coefv0 fPolyf0=coefff0
58 55 57 sylan9eqr fPolyA=0fA=coefff0
59 58 adantlr fPolycoefff00A=0fA=coefff0
60 simplr fPolycoefff00A=0coefff00
61 59 60 eqnetrd fPolycoefff00A=0fA0
62 61 neneqd fPolycoefff00A=0¬fA=0
63 62 adantlrr fPolycoefff00fA=0A=0¬fA=0
64 63 3adantl1 AfPolycoefff00fA=0A=0¬fA=0
65 54 64 pm2.65da AfPolycoefff00fA=0¬A=0
66 elsng AA0A=0
67 66 biimpa AA0A=0
68 67 3ad2antl1 AfPolycoefff00fA=0A0A=0
69 65 68 mtand AfPolycoefff00fA=0¬A0
70 69 3exp AfPolycoefff00fA=0¬A0
71 70 adantr AfPolycoefff00fA=0fPolycoefff00fA=0¬A0
72 52 53 71 rexlimd AfPolycoefff00fA=0fPolycoefff00fA=0¬A0
73 49 72 mpd AfPolycoefff00fA=0¬A0
74 48 73 eldifd AfPolycoefff00fA=0A𝔸0
75 25 74 impbii A𝔸0AfPolycoefff00fA=0