Metamath Proof Explorer


Theorem evls1sca

Description: Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019)

Ref Expression
Hypotheses evls1sca.q Q=SevalSub1R
evls1sca.w W=Poly1U
evls1sca.u U=S𝑠R
evls1sca.b B=BaseS
evls1sca.a A=algScW
evls1sca.s φSCRing
evls1sca.r φRSubRingS
evls1sca.x φXR
Assertion evls1sca φQAX=B×X

Proof

Step Hyp Ref Expression
1 evls1sca.q Q=SevalSub1R
2 evls1sca.w W=Poly1U
3 evls1sca.u U=S𝑠R
4 evls1sca.b B=BaseS
5 evls1sca.a A=algScW
6 evls1sca.s φSCRing
7 evls1sca.r φRSubRingS
8 evls1sca.x φXR
9 1on 1𝑜On
10 eqid 1𝑜evalSubSR=1𝑜evalSubSR
11 eqid 1𝑜mPolyU=1𝑜mPolyU
12 eqid S𝑠B1𝑜=S𝑠B1𝑜
13 10 11 3 12 4 evlsrhm 1𝑜OnSCRingRSubRingS1𝑜evalSubSR1𝑜mPolyURingHomS𝑠B1𝑜
14 9 6 7 13 mp3an2i φ1𝑜evalSubSR1𝑜mPolyURingHomS𝑠B1𝑜
15 eqid Base1𝑜mPolyU=Base1𝑜mPolyU
16 eqid BaseS𝑠B1𝑜=BaseS𝑠B1𝑜
17 15 16 rhmf 1𝑜evalSubSR1𝑜mPolyURingHomS𝑠B1𝑜1𝑜evalSubSR:Base1𝑜mPolyUBaseS𝑠B1𝑜
18 14 17 syl φ1𝑜evalSubSR:Base1𝑜mPolyUBaseS𝑠B1𝑜
19 eqid ScalarW=ScalarW
20 3 subrgring RSubRingSURing
21 7 20 syl φURing
22 2 ply1ring URingWRing
23 21 22 syl φWRing
24 2 ply1lmod URingWLMod
25 21 24 syl φWLMod
26 eqid BaseScalarW=BaseScalarW
27 eqid BaseW=BaseW
28 5 19 23 25 26 27 asclf φA:BaseScalarWBaseW
29 4 subrgss RSubRingSRB
30 7 29 syl φRB
31 3 4 ressbas2 RBR=BaseU
32 30 31 syl φR=BaseU
33 2 ply1sca URingU=ScalarW
34 21 33 syl φU=ScalarW
35 34 fveq2d φBaseU=BaseScalarW
36 32 35 eqtrd φR=BaseScalarW
37 eqid PwSer1U=PwSer1U
38 2 37 27 ply1bas BaseW=Base1𝑜mPolyU
39 38 a1i φBaseW=Base1𝑜mPolyU
40 39 eqcomd φBase1𝑜mPolyU=BaseW
41 36 40 feq23d φA:RBase1𝑜mPolyUA:BaseScalarWBaseW
42 28 41 mpbird φA:RBase1𝑜mPolyU
43 42 8 ffvelcdmd φAXBase1𝑜mPolyU
44 fvco3 1𝑜evalSubSR:Base1𝑜mPolyUBaseS𝑠B1𝑜AXBase1𝑜mPolyUxBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX=xBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX
45 18 43 44 syl2anc φxBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX=xBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX
46 5 a1i φA=algScW
47 eqid algScW=algScW
48 2 47 ply1ascl algScW=algSc1𝑜mPolyU
49 46 48 eqtrdi φA=algSc1𝑜mPolyU
50 49 fveq1d φAX=algSc1𝑜mPolyUX
51 50 fveq2d φ1𝑜evalSubSRAX=1𝑜evalSubSRalgSc1𝑜mPolyUX
52 eqid algSc1𝑜mPolyU=algSc1𝑜mPolyU
53 9 a1i φ1𝑜On
54 10 11 3 4 52 53 6 7 8 evlssca φ1𝑜evalSubSRalgSc1𝑜mPolyUX=B1𝑜×X
55 51 54 eqtrd φ1𝑜evalSubSRAX=B1𝑜×X
56 55 fveq2d φxBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX=xBB1𝑜xyB1𝑜×yB1𝑜×X
57 eqidd φxBB1𝑜xyB1𝑜×y=xBB1𝑜xyB1𝑜×y
58 coeq1 x=B1𝑜×XxyB1𝑜×y=B1𝑜×XyB1𝑜×y
59 58 adantl φx=B1𝑜×XxyB1𝑜×y=B1𝑜×XyB1𝑜×y
60 30 8 sseldd φXB
61 fconst6g XBB1𝑜×X:B1𝑜B
62 60 61 syl φB1𝑜×X:B1𝑜B
63 4 fvexi BV
64 63 a1i φBV
65 ovex B1𝑜V
66 65 a1i φB1𝑜V
67 64 66 elmapd φB1𝑜×XBB1𝑜B1𝑜×X:B1𝑜B
68 62 67 mpbird φB1𝑜×XBB1𝑜
69 snex XV
70 65 69 xpex B1𝑜×XV
71 70 a1i φB1𝑜×XV
72 64 mptexd φyB1𝑜×yV
73 coexg B1𝑜×XVyB1𝑜×yVB1𝑜×XyB1𝑜×yV
74 71 72 73 syl2anc φB1𝑜×XyB1𝑜×yV
75 57 59 68 74 fvmptd φxBB1𝑜xyB1𝑜×yB1𝑜×X=B1𝑜×XyB1𝑜×y
76 fconst6g yB1𝑜×y:1𝑜B
77 76 adantl φyB1𝑜×y:1𝑜B
78 63 9 pm3.2i BV1𝑜On
79 78 a1i φyBBV1𝑜On
80 elmapg BV1𝑜On1𝑜×yB1𝑜1𝑜×y:1𝑜B
81 79 80 syl φyB1𝑜×yB1𝑜1𝑜×y:1𝑜B
82 77 81 mpbird φyB1𝑜×yB1𝑜
83 eqidd φyB1𝑜×y=yB1𝑜×y
84 fconstmpt B1𝑜×X=zB1𝑜X
85 84 a1i φB1𝑜×X=zB1𝑜X
86 eqidd z=1𝑜×yX=X
87 82 83 85 86 fmptco φB1𝑜×XyB1𝑜×y=yBX
88 75 87 eqtrd φxBB1𝑜xyB1𝑜×yB1𝑜×X=yBX
89 45 56 88 3eqtrd φxBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX=yBX
90 elpwg RSubRingSR𝒫BRB
91 29 90 mpbird RSubRingSR𝒫B
92 7 91 syl φR𝒫B
93 eqid 1𝑜evalSubS=1𝑜evalSubS
94 1 93 4 evls1fval SCRingR𝒫BQ=xBB1𝑜xyB1𝑜×y1𝑜evalSubSR
95 6 92 94 syl2anc φQ=xBB1𝑜xyB1𝑜×y1𝑜evalSubSR
96 95 fveq1d φQAX=xBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX
97 fconstmpt B×X=yBX
98 97 a1i φB×X=yBX
99 89 96 98 3eqtr4d φQAX=B×X