Metamath Proof Explorer


Theorem expdiophlem1

Description: Lemma for expdioph . Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014)

Ref Expression
Assertion expdiophlem1 C0A2BC=ABd0e0f0A2BA2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C

Proof

Step Hyp Ref Expression
1 2re 2
2 1 a1i A2B2
3 nnre BB
4 peano2re BB+1
5 3 4 syl BB+1
6 5 adantl A2BB+1
7 nnz BB
8 7 peano2zd BB+1
9 frmy Yrm:2×
10 9 fovcl A2B+1AYrmB+1
11 8 10 sylan2 A2BAYrmB+1
12 11 zred A2BAYrmB+1
13 elnnuz BB1
14 eluzp1p1 B1B+11+1
15 df-2 2=1+1
16 15 fveq2i 2=1+1
17 14 16 eleqtrrdi B1B+12
18 13 17 sylbi BB+12
19 eluzle B+122B+1
20 18 19 syl B2B+1
21 20 adantl A2B2B+1
22 nnnn0 BB0
23 peano2nn0 B0B+10
24 22 23 syl BB+10
25 rmygeid A2B+10B+1AYrmB+1
26 24 25 sylan2 A2BB+1AYrmB+1
27 2 6 12 21 26 letrd A2B2AYrmB+1
28 2z 2
29 eluz 2AYrmB+1AYrmB+122AYrmB+1
30 28 11 29 sylancr A2BAYrmB+122AYrmB+1
31 27 30 mpbird A2BAYrmB+12
32 31 adantl C0A2BAYrmB+12
33 simprl C0A2BA2
34 simprr C0A2BB
35 12 leidd A2BAYrmB+1AYrmB+1
36 35 adantl C0A2BAYrmB+1AYrmB+1
37 jm3.1 AYrmB+12A2BAYrmB+1AYrmB+1AB=AYrmB+1XrmBAYrmB+1AAYrmB+1YrmBmod2AYrmB+1A-A2-1
38 32 33 34 36 37 syl31anc C0A2BAB=AYrmB+1XrmBAYrmB+1AAYrmB+1YrmBmod2AYrmB+1A-A2-1
39 38 eqeq2d C0A2BC=ABC=AYrmB+1XrmBAYrmB+1AAYrmB+1YrmBmod2AYrmB+1A-A2-1
40 7 adantl A2BB
41 frmx Xrm:2×0
42 41 fovcl AYrmB+12BAYrmB+1XrmB0
43 31 40 42 syl2anc A2BAYrmB+1XrmB0
44 43 nn0zd A2BAYrmB+1XrmB
45 eluzelz A2A
46 45 adantr A2BA
47 11 46 zsubcld A2BAYrmB+1A
48 9 fovcl AYrmB+12BAYrmB+1YrmB
49 31 40 48 syl2anc A2BAYrmB+1YrmB
50 47 49 zmulcld A2BAYrmB+1AAYrmB+1YrmB
51 44 50 zsubcld A2BAYrmB+1XrmBAYrmB+1AAYrmB+1YrmB
52 51 adantl C0A2BAYrmB+1XrmBAYrmB+1AAYrmB+1YrmB
53 32 33 34 36 jm3.1lem3 C0A2B2AYrmB+1A-A2-1
54 simpl C0A2BC0
55 divalgmodcl AYrmB+1XrmBAYrmB+1AAYrmB+1YrmB2AYrmB+1A-A2-1C0C=AYrmB+1XrmBAYrmB+1AAYrmB+1YrmBmod2AYrmB+1A-A2-1C<2AYrmB+1A-A2-12AYrmB+1A-A2-1AYrmB+1XrmB-AYrmB+1AAYrmB+1YrmB-C
56 52 53 54 55 syl3anc C0A2BC=AYrmB+1XrmBAYrmB+1AAYrmB+1YrmBmod2AYrmB+1A-A2-1C<2AYrmB+1A-A2-12AYrmB+1A-A2-1AYrmB+1XrmB-AYrmB+1AAYrmB+1YrmB-C
57 39 56 bitrd C0A2BC=ABC<2AYrmB+1A-A2-12AYrmB+1A-A2-1AYrmB+1XrmB-AYrmB+1AAYrmB+1YrmB-C
58 rmynn0 A2B+10AYrmB+10
59 24 58 sylan2 A2BAYrmB+10
60 59 adantl C0A2BAYrmB+10
61 oveq1 d=AYrmB+1dYrmB=AYrmB+1YrmB
62 61 eqeq2d d=AYrmB+1e=dYrmBe=AYrmB+1YrmB
63 oveq1 d=AYrmB+1dXrmB=AYrmB+1XrmB
64 63 eqeq2d d=AYrmB+1f=dXrmBf=AYrmB+1XrmB
65 oveq2 d=AYrmB+12d=2AYrmB+1
66 65 oveq1d d=AYrmB+12dA=2AYrmB+1A
67 66 oveq1d d=AYrmB+12dAA2=2AYrmB+1AA2
68 67 oveq1d d=AYrmB+12dA-A2-1=2AYrmB+1A-A2-1
69 68 breq2d d=AYrmB+1C<2dA-A2-1C<2AYrmB+1A-A2-1
70 oveq1 d=AYrmB+1dA=AYrmB+1A
71 70 oveq1d d=AYrmB+1dAe=AYrmB+1Ae
72 71 oveq2d d=AYrmB+1fdAe=fAYrmB+1Ae
73 72 oveq1d d=AYrmB+1f-dAe-C=f-AYrmB+1Ae-C
74 68 73 breq12d d=AYrmB+12dA-A2-1f-dAe-C2AYrmB+1A-A2-1f-AYrmB+1Ae-C
75 69 74 anbi12d d=AYrmB+1C<2dA-A2-12dA-A2-1f-dAe-CC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-C
76 64 75 anbi12d d=AYrmB+1f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cf=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-C
77 76 rexbidv d=AYrmB+1f0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-C
78 62 77 anbi12d d=AYrmB+1e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Ce=AYrmB+1YrmBf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-C
79 78 rexbidv d=AYrmB+1e0e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Ce0e=AYrmB+1YrmBf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-C
80 79 ceqsrexv AYrmB+10d0d=AYrmB+1e0e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Ce0e=AYrmB+1YrmBf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-C
81 60 80 syl C0A2Bd0d=AYrmB+1e0e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Ce0e=AYrmB+1YrmBf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-C
82 22 ad2antll C0A2BB0
83 rmynn0 AYrmB+12B0AYrmB+1YrmB0
84 32 82 83 syl2anc C0A2BAYrmB+1YrmB0
85 oveq2 e=AYrmB+1YrmBAYrmB+1Ae=AYrmB+1AAYrmB+1YrmB
86 85 oveq2d e=AYrmB+1YrmBfAYrmB+1Ae=fAYrmB+1AAYrmB+1YrmB
87 86 oveq1d e=AYrmB+1YrmBf-AYrmB+1Ae-C=f-AYrmB+1AAYrmB+1YrmB-C
88 87 breq2d e=AYrmB+1YrmB2AYrmB+1A-A2-1f-AYrmB+1Ae-C2AYrmB+1A-A2-1f-AYrmB+1AAYrmB+1YrmB-C
89 88 anbi2d e=AYrmB+1YrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-CC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1AAYrmB+1YrmB-C
90 89 anbi2d e=AYrmB+1YrmBf=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-Cf=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1AAYrmB+1YrmB-C
91 90 rexbidv e=AYrmB+1YrmBf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-Cf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1AAYrmB+1YrmB-C
92 91 ceqsrexv AYrmB+1YrmB0e0e=AYrmB+1YrmBf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-Cf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1AAYrmB+1YrmB-C
93 84 92 syl C0A2Be0e=AYrmB+1YrmBf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1Ae-Cf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1AAYrmB+1YrmB-C
94 7 ad2antll C0A2BB
95 32 94 42 syl2anc C0A2BAYrmB+1XrmB0
96 oveq1 f=AYrmB+1XrmBfAYrmB+1AAYrmB+1YrmB=AYrmB+1XrmBAYrmB+1AAYrmB+1YrmB
97 96 oveq1d f=AYrmB+1XrmBf-AYrmB+1AAYrmB+1YrmB-C=AYrmB+1XrmB-AYrmB+1AAYrmB+1YrmB-C
98 97 breq2d f=AYrmB+1XrmB2AYrmB+1A-A2-1f-AYrmB+1AAYrmB+1YrmB-C2AYrmB+1A-A2-1AYrmB+1XrmB-AYrmB+1AAYrmB+1YrmB-C
99 98 anbi2d f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1AAYrmB+1YrmB-CC<2AYrmB+1A-A2-12AYrmB+1A-A2-1AYrmB+1XrmB-AYrmB+1AAYrmB+1YrmB-C
100 99 ceqsrexv AYrmB+1XrmB0f0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1AAYrmB+1YrmB-CC<2AYrmB+1A-A2-12AYrmB+1A-A2-1AYrmB+1XrmB-AYrmB+1AAYrmB+1YrmB-C
101 95 100 syl C0A2Bf0f=AYrmB+1XrmBC<2AYrmB+1A-A2-12AYrmB+1A-A2-1f-AYrmB+1AAYrmB+1YrmB-CC<2AYrmB+1A-A2-12AYrmB+1A-A2-1AYrmB+1XrmB-AYrmB+1AAYrmB+1YrmB-C
102 81 93 101 3bitrrd C0A2BC<2AYrmB+1A-A2-12AYrmB+1A-A2-1AYrmB+1XrmB-AYrmB+1AAYrmB+1YrmB-Cd0d=AYrmB+1e0e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
103 r19.42v f0d=AYrmB+1e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd=AYrmB+1f0e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
104 r19.42v f0e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Ce=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
105 104 anbi2i d=AYrmB+1f0e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd=AYrmB+1e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
106 103 105 bitri f0d=AYrmB+1e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd=AYrmB+1e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
107 106 rexbii e0f0d=AYrmB+1e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Ce0d=AYrmB+1e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
108 r19.42v e0d=AYrmB+1e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd=AYrmB+1e0e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
109 107 108 bitri e0f0d=AYrmB+1e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd=AYrmB+1e0e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
110 109 rexbii d0e0f0d=AYrmB+1e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd0d=AYrmB+1e0e=dYrmBf0f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
111 102 110 bitr4di C0A2BC<2AYrmB+1A-A2-12AYrmB+1A-A2-1AYrmB+1XrmB-AYrmB+1AAYrmB+1YrmB-Cd0e0f0d=AYrmB+1e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
112 eleq1 d=AYrmB+1d2AYrmB+12
113 32 112 syl5ibrcom C0A2Bd=AYrmB+1d2
114 113 imp C0A2Bd=AYrmB+1d2
115 ibar d2e=dYrmBd2e=dYrmB
116 ibar d2f=dXrmBd2f=dXrmB
117 116 anbi1d d2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
118 115 117 anbi12d d2e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
119 114 118 syl C0A2Bd=AYrmB+1e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
120 119 pm5.32da C0A2Bd=AYrmB+1e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
121 ibar A2d=AYrmB+1A2d=AYrmB+1
122 121 ad2antrl C0A2Bd=AYrmB+1A2d=AYrmB+1
123 122 anbi1d C0A2Bd=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-CA2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
124 120 123 bitrd C0A2Bd=AYrmB+1e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-CA2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
125 124 rexbidv C0A2Bf0d=AYrmB+1e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cf0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
126 125 2rexbidv C0A2Bd0e0f0d=AYrmB+1e=dYrmBf=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd0e0f0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
127 111 126 bitrd C0A2BC<2AYrmB+1A-A2-12AYrmB+1A-A2-1AYrmB+1XrmB-AYrmB+1AAYrmB+1YrmB-Cd0e0f0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
128 57 127 bitrd C0A2BC=ABd0e0f0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
129 128 pm5.32da C0A2BC=ABA2Bd0e0f0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
130 r19.42v f0A2BA2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-CA2Bf0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
131 130 2rexbii d0e0f0A2BA2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd0e0A2Bf0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
132 r19.42v e0A2Bf0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-CA2Be0f0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
133 132 rexbii d0e0A2Bf0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-Cd0A2Be0f0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
134 r19.42v d0A2Be0f0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-CA2Bd0e0f0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
135 133 134 bitri d0e0A2Bf0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-CA2Bd0e0f0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
136 131 135 bitri d0e0f0A2BA2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-CA2Bd0e0f0A2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C
137 129 136 bitr4di C0A2BC=ABd0e0f0A2BA2d=AYrmB+1d2e=dYrmBd2f=dXrmBC<2dA-A2-12dA-A2-1f-dAe-C