| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finminlem.1 |
|
| 2 |
|
nfe1 |
|
| 3 |
|
nfcv |
|
| 4 |
2 3
|
nfrabw |
|
| 5 |
|
nfcv |
|
| 6 |
4 5
|
nfne |
|
| 7 |
|
isfi |
|
| 8 |
|
19.8a |
|
| 9 |
8
|
anim2i |
|
| 10 |
9
|
3impb |
|
| 11 |
|
breq2 |
|
| 12 |
11
|
anbi1d |
|
| 13 |
12
|
exbidv |
|
| 14 |
13
|
elrab |
|
| 15 |
10 14
|
sylibr |
|
| 16 |
15
|
ne0d |
|
| 17 |
16
|
3exp |
|
| 18 |
17
|
rexlimiv |
|
| 19 |
7 18
|
sylbi |
|
| 20 |
6 19
|
rexlimi |
|
| 21 |
|
epweon |
|
| 22 |
|
ssrab2 |
|
| 23 |
|
omsson |
|
| 24 |
22 23
|
sstri |
|
| 25 |
|
wefrc |
|
| 26 |
21 24 25
|
mp3an12 |
|
| 27 |
|
nfv |
|
| 28 |
|
nfcv |
|
| 29 |
4 28
|
nfin |
|
| 30 |
29
|
nfeq1 |
|
| 31 |
27 30
|
nfan |
|
| 32 |
|
simprr |
|
| 33 |
|
sspss |
|
| 34 |
|
rspe |
|
| 35 |
|
pssss |
|
| 36 |
|
ssfi |
|
| 37 |
35 36
|
sylan2 |
|
| 38 |
37
|
ex |
|
| 39 |
7 38
|
sylbir |
|
| 40 |
34 39
|
syl |
|
| 41 |
40
|
adantrr |
|
| 42 |
41
|
adantrr |
|
| 43 |
|
isfi |
|
| 44 |
|
simprll |
|
| 45 |
|
simprlr |
|
| 46 |
|
simplrr |
|
| 47 |
|
vex |
|
| 48 |
|
breq1 |
|
| 49 |
48 1
|
anbi12d |
|
| 50 |
47 49
|
spcev |
|
| 51 |
45 46 50
|
syl2anc |
|
| 52 |
34 7
|
sylibr |
|
| 53 |
52
|
adantrr |
|
| 54 |
53
|
adantrr |
|
| 55 |
54
|
adantr |
|
| 56 |
|
php3 |
|
| 57 |
56
|
ex |
|
| 58 |
55 57
|
syl |
|
| 59 |
|
vex |
|
| 60 |
|
ssdomg |
|
| 61 |
59 60
|
ax-mp |
|
| 62 |
|
endomtr |
|
| 63 |
62
|
ex |
|
| 64 |
63
|
ad2antrr |
|
| 65 |
64
|
ad2antlr |
|
| 66 |
|
ensym |
|
| 67 |
|
domentr |
|
| 68 |
66 67
|
sylan2 |
|
| 69 |
68
|
expcom |
|
| 70 |
69
|
ad2antll |
|
| 71 |
65 70
|
syld |
|
| 72 |
61 71
|
syl5 |
|
| 73 |
|
domnsym |
|
| 74 |
73
|
con2i |
|
| 75 |
72 74
|
nsyli |
|
| 76 |
58 75
|
syld |
|
| 77 |
76
|
impr |
|
| 78 |
|
nnord |
|
| 79 |
78
|
ad2antrr |
|
| 80 |
|
nnord |
|
| 81 |
80
|
adantr |
|
| 82 |
81
|
ad2antrl |
|
| 83 |
|
ordtri1 |
|
| 84 |
83
|
con2bid |
|
| 85 |
79 82 84
|
syl2anc |
|
| 86 |
77 85
|
mpbird |
|
| 87 |
44 51 86
|
jca31 |
|
| 88 |
|
elin |
|
| 89 |
|
breq2 |
|
| 90 |
89
|
anbi1d |
|
| 91 |
90
|
exbidv |
|
| 92 |
91
|
elrab |
|
| 93 |
92
|
anbi1i |
|
| 94 |
88 93
|
bitri |
|
| 95 |
87 94
|
sylibr |
|
| 96 |
95
|
ne0d |
|
| 97 |
96
|
exp44 |
|
| 98 |
97
|
rexlimdv |
|
| 99 |
43 98
|
biimtrid |
|
| 100 |
99
|
com23 |
|
| 101 |
42 100
|
mpdd |
|
| 102 |
101
|
necon2bd |
|
| 103 |
102
|
ex |
|
| 104 |
103
|
com23 |
|
| 105 |
104
|
imp31 |
|
| 106 |
105
|
pm2.21d |
|
| 107 |
|
equcomi |
|
| 108 |
107
|
a1i |
|
| 109 |
106 108
|
jaod |
|
| 110 |
33 109
|
biimtrid |
|
| 111 |
110
|
expr |
|
| 112 |
111
|
com23 |
|
| 113 |
112
|
impd |
|
| 114 |
113
|
alrimiv |
|
| 115 |
32 114
|
jca |
|
| 116 |
115
|
ex |
|
| 117 |
31 116
|
eximd |
|
| 118 |
117
|
impancom |
|
| 119 |
14 118
|
sylbi |
|
| 120 |
119
|
rexlimiv |
|
| 121 |
20 26 120
|
3syl |
|