Metamath Proof Explorer


Theorem fpwwe2lem8

Description: Lemma for fpwwe2 . Given two well-orders <. X , R >. and <. Y , S >. of parts of A , one is an initial segment of the other. (The O C_ P hypothesis is in order to break the symmetry of X and Y .) (Contributed by Mario Carneiro, 15-May-2015) (Proof shortened by Peter Mazsa, 23-Sep-2022) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
fpwwe2.2 φAV
fpwwe2.3 φxArx×xrWexxFrA
fpwwe2lem8.x φXWR
fpwwe2lem8.y φYWS
fpwwe2lem8.m M=OrdIsoRX
fpwwe2lem8.n N=OrdIsoSY
fpwwe2lem8.s φdomMdomN
Assertion fpwwe2lem8 φXYR=SY×X

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
2 fpwwe2.2 φAV
3 fpwwe2.3 φxArx×xrWexxFrA
4 fpwwe2lem8.x φXWR
5 fpwwe2lem8.y φYWS
6 fpwwe2lem8.m M=OrdIsoRX
7 fpwwe2lem8.n N=OrdIsoSY
8 fpwwe2lem8.s φdomMdomN
9 1 relopabiv RelW
10 9 brrelex1i XWRXV
11 4 10 syl φXV
12 1 2 fpwwe2lem2 φXWRXARX×XRWeXyX[˙R-1y/u]˙uFRu×u=y
13 4 12 mpbid φXARX×XRWeXyX[˙R-1y/u]˙uFRu×u=y
14 13 simprld φRWeX
15 6 oiiso XVRWeXMIsomE,RdomMX
16 11 14 15 syl2anc φMIsomE,RdomMX
17 isof1o MIsomE,RdomMXM:domM1-1 ontoX
18 16 17 syl φM:domM1-1 ontoX
19 f1ofo M:domM1-1 ontoXM:domMontoX
20 forn M:domMontoXranM=X
21 18 19 20 3syl φranM=X
22 1 2 3 4 5 6 7 8 fpwwe2lem7 φM=NdomM
23 22 rneqd φranM=ranNdomM
24 21 23 eqtr3d φX=ranNdomM
25 df-ima NdomM=ranNdomM
26 24 25 eqtr4di φX=NdomM
27 imassrn NdomMranN
28 9 brrelex1i YWSYV
29 5 28 syl φYV
30 1 2 fpwwe2lem2 φYWSYASY×YSWeYyY[˙S-1y/u]˙uFSu×u=y
31 5 30 mpbid φYASY×YSWeYyY[˙S-1y/u]˙uFSu×u=y
32 31 simprld φSWeY
33 7 oiiso YVSWeYNIsomE,SdomNY
34 29 32 33 syl2anc φNIsomE,SdomNY
35 isof1o NIsomE,SdomNYN:domN1-1 ontoY
36 34 35 syl φN:domN1-1 ontoY
37 f1ofo N:domN1-1 ontoYN:domNontoY
38 forn N:domNontoYranN=Y
39 36 37 38 3syl φranN=Y
40 27 39 sseqtrid φNdomMY
41 26 40 eqsstrd φXY
42 13 simplrd φRX×X
43 relxp RelX×X
44 relss RX×XRelX×XRelR
45 42 43 44 mpisyl φRelR
46 relinxp RelSY×X
47 45 46 jctir φRelRRelSY×X
48 42 ssbrd φxRyxX×Xy
49 brxp xX×XyxXyX
50 48 49 imbitrdi φxRyxXyX
51 brinxp2 xSY×XyxYyXxSy
52 isocnv NIsomE,SdomNYN-1IsomS,EYdomN
53 34 52 syl φN-1IsomS,EYdomN
54 53 adantr φxYyXxSyN-1IsomS,EYdomN
55 isof1o N-1IsomS,EYdomNN-1:Y1-1 ontodomN
56 f1ofn N-1:Y1-1 ontodomNN-1FnY
57 54 55 56 3syl φxYyXxSyN-1FnY
58 simprll φxYyXxSyxY
59 simprr φxYyXxSyxSy
60 41 adantr φxYyXxSyXY
61 simprlr φxYyXxSyyX
62 60 61 sseldd φxYyXxSyyY
63 isorel N-1IsomS,EYdomNxYyYxSyN-1xEN-1y
64 54 58 62 63 syl12anc φxYyXxSyxSyN-1xEN-1y
65 59 64 mpbid φxYyXxSyN-1xEN-1y
66 fvex N-1yV
67 66 epeli N-1xEN-1yN-1xN-1y
68 65 67 sylib φxYyXxSyN-1xN-1y
69 22 adantr φxYyXxSyM=NdomM
70 69 cnveqd φxYyXxSyM-1=NdomM-1
71 fnfun N-1FnYFunN-1
72 funcnvres FunN-1NdomM-1=N-1NdomM
73 57 71 72 3syl φxYyXxSyNdomM-1=N-1NdomM
74 70 73 eqtrd φxYyXxSyM-1=N-1NdomM
75 74 fveq1d φxYyXxSyM-1y=N-1NdomMy
76 26 adantr φxYyXxSyX=NdomM
77 61 76 eleqtrd φxYyXxSyyNdomM
78 77 fvresd φxYyXxSyN-1NdomMy=N-1y
79 75 78 eqtrd φxYyXxSyM-1y=N-1y
80 isocnv MIsomE,RdomMXM-1IsomR,EXdomM
81 16 80 syl φM-1IsomR,EXdomM
82 isof1o M-1IsomR,EXdomMM-1:X1-1 ontodomM
83 f1of M-1:X1-1 ontodomMM-1:XdomM
84 81 82 83 3syl φM-1:XdomM
85 84 adantr φxYyXxSyM-1:XdomM
86 85 61 ffvelcdmd φxYyXxSyM-1ydomM
87 79 86 eqeltrrd φxYyXxSyN-1ydomM
88 6 oicl OrddomM
89 ordtr1 OrddomMN-1xN-1yN-1ydomMN-1xdomM
90 88 89 ax-mp N-1xN-1yN-1ydomMN-1xdomM
91 68 87 90 syl2anc φxYyXxSyN-1xdomM
92 57 58 91 elpreimad φxYyXxSyxN-1-1domM
93 imacnvcnv N-1-1domM=NdomM
94 76 93 eqtr4di φxYyXxSyX=N-1-1domM
95 92 94 eleqtrrd φxYyXxSyxX
96 95 61 jca φxYyXxSyxXyX
97 96 ex φxYyXxSyxXyX
98 51 97 biimtrid φxSY×XyxXyX
99 22 adantr φxXyXM=NdomM
100 99 cnveqd φxXyXM-1=NdomM-1
101 100 fveq1d φxXyXM-1x=NdomM-1x
102 100 fveq1d φxXyXM-1y=NdomM-1y
103 101 102 breq12d φxXyXM-1xEM-1yNdomM-1xENdomM-1y
104 isorel M-1IsomR,EXdomMxXyXxRyM-1xEM-1y
105 81 104 sylan φxXyXxRyM-1xEM-1y
106 eqidd φNdomM=NdomM
107 isores3 NIsomE,SdomNYdomMdomNNdomM=NdomMNdomMIsomE,SdomMNdomM
108 34 8 106 107 syl3anc φNdomMIsomE,SdomMNdomM
109 isocnv NdomMIsomE,SdomMNdomMNdomM-1IsomS,ENdomMdomM
110 108 109 syl φNdomM-1IsomS,ENdomMdomM
111 110 adantr φxXyXNdomM-1IsomS,ENdomMdomM
112 simprl φxXyXxX
113 26 adantr φxXyXX=NdomM
114 112 113 eleqtrd φxXyXxNdomM
115 simprr φxXyXyX
116 115 113 eleqtrd φxXyXyNdomM
117 isorel NdomM-1IsomS,ENdomMdomMxNdomMyNdomMxSyNdomM-1xENdomM-1y
118 111 114 116 117 syl12anc φxXyXxSyNdomM-1xENdomM-1y
119 103 105 118 3bitr4d φxXyXxRyxSy
120 41 sselda φxXxY
121 120 adantrr φxXyXxY
122 121 115 jca φxXyXxYyX
123 122 biantrurd φxXyXxSyxYyXxSy
124 123 51 bitr4di φxXyXxSyxSY×Xy
125 119 124 bitrd φxXyXxRyxSY×Xy
126 125 ex φxXyXxRyxSY×Xy
127 50 98 126 pm5.21ndd φxRyxSY×Xy
128 df-br xRyxyR
129 df-br xSY×XyxySY×X
130 127 128 129 3bitr3g φxyRxySY×X
131 130 eqrelrdv2 RelRRelSY×XφR=SY×X
132 47 131 mpancom φR=SY×X
133 41 132 jca φXYR=SY×X