Metamath Proof Explorer


Theorem fsumss

Description: Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014)

Ref Expression
Hypotheses sumss.1 φAB
sumss.2 φkAC
sumss.3 φkBAC=0
fsumss.4 φBFin
Assertion fsumss φkAC=kBC

Proof

Step Hyp Ref Expression
1 sumss.1 φAB
2 sumss.2 φkAC
3 sumss.3 φkBAC=0
4 fsumss.4 φBFin
5 1 adantr φB=AB
6 2 adantlr φB=kAC
7 3 adantlr φB=kBAC=0
8 simpr φB=B=
9 0ss 0
10 8 9 eqsstrdi φB=B0
11 5 6 7 10 sumss φB=kAC=kBC
12 11 ex φB=kAC=kBC
13 cnvimass f-1Adomf
14 simprr φBf:1B1-1 ontoBf:1B1-1 ontoB
15 f1of f:1B1-1 ontoBf:1BB
16 14 15 syl φBf:1B1-1 ontoBf:1BB
17 13 16 fssdm φBf:1B1-1 ontoBf-1A1B
18 16 ffnd φBf:1B1-1 ontoBfFn1B
19 elpreima fFn1Bnf-1An1BfnA
20 18 19 syl φBf:1B1-1 ontoBnf-1An1BfnA
21 16 ffvelcdmda φBf:1B1-1 ontoBn1BfnB
22 21 ex φBf:1B1-1 ontoBn1BfnB
23 22 adantrd φBf:1B1-1 ontoBn1BfnAfnB
24 20 23 sylbid φBf:1B1-1 ontoBnf-1AfnB
25 24 imp φBf:1B1-1 ontoBnf-1AfnB
26 2 ex φkAC
27 26 adantr φkBkAC
28 eldif kBAkB¬kA
29 0cn 0
30 3 29 eqeltrdi φkBAC
31 28 30 sylan2br φkB¬kAC
32 31 expr φkB¬kAC
33 27 32 pm2.61d φkBC
34 33 fmpttd φkBC:B
35 34 adantr φBf:1B1-1 ontoBkBC:B
36 35 ffvelcdmda φBf:1B1-1 ontoBfnBkBCfn
37 25 36 syldan φBf:1B1-1 ontoBnf-1AkBCfn
38 eldifi n1Bf-1An1B
39 38 21 sylan2 φBf:1B1-1 ontoBn1Bf-1AfnB
40 eldifn n1Bf-1A¬nf-1A
41 40 adantl φBf:1B1-1 ontoBn1Bf-1A¬nf-1A
42 38 adantl φBf:1B1-1 ontoBn1Bf-1An1B
43 20 adantr φBf:1B1-1 ontoBn1Bf-1Anf-1An1BfnA
44 42 43 mpbirand φBf:1B1-1 ontoBn1Bf-1Anf-1AfnA
45 41 44 mtbid φBf:1B1-1 ontoBn1Bf-1A¬fnA
46 39 45 eldifd φBf:1B1-1 ontoBn1Bf-1AfnBA
47 difss BAB
48 resmpt BABkBCBA=kBAC
49 47 48 ax-mp kBCBA=kBAC
50 49 fveq1i kBCBAfn=kBACfn
51 fvres fnBAkBCBAfn=kBCfn
52 50 51 eqtr3id fnBAkBACfn=kBCfn
53 46 52 syl φBf:1B1-1 ontoBn1Bf-1AkBACfn=kBCfn
54 c0ex 0V
55 54 elsn2 C0C=0
56 3 55 sylibr φkBAC0
57 56 fmpttd φkBAC:BA0
58 57 ad2antrr φBf:1B1-1 ontoBn1Bf-1AkBAC:BA0
59 58 46 ffvelcdmd φBf:1B1-1 ontoBn1Bf-1AkBACfn0
60 elsni kBACfn0kBACfn=0
61 59 60 syl φBf:1B1-1 ontoBn1Bf-1AkBACfn=0
62 53 61 eqtr3d φBf:1B1-1 ontoBn1Bf-1AkBCfn=0
63 fzssuz 1B1
64 63 a1i φBf:1B1-1 ontoB1B1
65 17 37 62 64 sumss φBf:1B1-1 ontoBnf-1AkBCfn=n=1BkBCfn
66 1 ad2antrr φBf:1B1-1 ontoBmAAB
67 66 resmptd φBf:1B1-1 ontoBmAkBCA=kAC
68 67 fveq1d φBf:1B1-1 ontoBmAkBCAm=kACm
69 fvres mAkBCAm=kBCm
70 69 adantl φBf:1B1-1 ontoBmAkBCAm=kBCm
71 68 70 eqtr3d φBf:1B1-1 ontoBmAkACm=kBCm
72 71 sumeq2dv φBf:1B1-1 ontoBmAkACm=mAkBCm
73 fveq2 m=fnkBCm=kBCfn
74 fzfid φBf:1B1-1 ontoB1BFin
75 74 16 fisuppfi φBf:1B1-1 ontoBf-1AFin
76 f1of1 f:1B1-1 ontoBf:1B1-1B
77 14 76 syl φBf:1B1-1 ontoBf:1B1-1B
78 f1ores f:1B1-1Bf-1A1Bff-1A:f-1A1-1 ontoff-1A
79 77 17 78 syl2anc φBf:1B1-1 ontoBff-1A:f-1A1-1 ontoff-1A
80 f1ofo f:1B1-1 ontoBf:1BontoB
81 14 80 syl φBf:1B1-1 ontoBf:1BontoB
82 1 adantr φBf:1B1-1 ontoBAB
83 foimacnv f:1BontoBABff-1A=A
84 81 82 83 syl2anc φBf:1B1-1 ontoBff-1A=A
85 84 f1oeq3d φBf:1B1-1 ontoBff-1A:f-1A1-1 ontoff-1Aff-1A:f-1A1-1 ontoA
86 79 85 mpbid φBf:1B1-1 ontoBff-1A:f-1A1-1 ontoA
87 fvres nf-1Aff-1An=fn
88 87 adantl φBf:1B1-1 ontoBnf-1Aff-1An=fn
89 82 sselda φBf:1B1-1 ontoBmAmB
90 35 ffvelcdmda φBf:1B1-1 ontoBmBkBCm
91 89 90 syldan φBf:1B1-1 ontoBmAkBCm
92 73 75 86 88 91 fsumf1o φBf:1B1-1 ontoBmAkBCm=nf-1AkBCfn
93 72 92 eqtrd φBf:1B1-1 ontoBmAkACm=nf-1AkBCfn
94 eqidd φBf:1B1-1 ontoBn1Bfn=fn
95 73 74 14 94 90 fsumf1o φBf:1B1-1 ontoBmBkBCm=n=1BkBCfn
96 65 93 95 3eqtr4d φBf:1B1-1 ontoBmAkACm=mBkBCm
97 sumfc mAkACm=kAC
98 sumfc mBkBCm=kBC
99 96 97 98 3eqtr3g φBf:1B1-1 ontoBkAC=kBC
100 99 expr φBf:1B1-1 ontoBkAC=kBC
101 100 exlimdv φBff:1B1-1 ontoBkAC=kBC
102 101 expimpd φBff:1B1-1 ontoBkAC=kBC
103 fz1f1o BFinB=Bff:1B1-1 ontoB
104 4 103 syl φB=Bff:1B1-1 ontoB
105 12 102 104 mpjaod φkAC=kBC