Metamath Proof Explorer


Theorem ftc1lem6

Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 14-Aug-2014) (Proof shortened by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses ftc1.g G=xABAxFtdt
ftc1.a φA
ftc1.b φB
ftc1.le φAB
ftc1.s φABD
ftc1.d φD
ftc1.i φF𝐿1
ftc1.c φCAB
ftc1.f φFKCnPLC
ftc1.j J=L𝑡
ftc1.k K=L𝑡D
ftc1.l L=TopOpenfld
ftc1.h H=zABCGzGCzC
Assertion ftc1lem6 φFCHlimC

Proof

Step Hyp Ref Expression
1 ftc1.g G=xABAxFtdt
2 ftc1.a φA
3 ftc1.b φB
4 ftc1.le φAB
5 ftc1.s φABD
6 ftc1.d φD
7 ftc1.i φF𝐿1
8 ftc1.c φCAB
9 ftc1.f φFKCnPLC
10 ftc1.j J=L𝑡
11 ftc1.k K=L𝑡D
12 ftc1.l L=TopOpenfld
13 ftc1.h H=zABCGzGCzC
14 1 2 3 4 5 6 7 8 9 10 11 12 ftc1lem3 φF:D
15 5 8 sseldd φCD
16 14 15 ffvelcdmd φFC
17 cnxmet abs∞Met
18 ax-resscn
19 6 18 sstrdi φD
20 19 adantr φw+D
21 xmetres2 abs∞MetDabsD×D∞MetD
22 17 20 21 sylancr φw+absD×D∞MetD
23 17 a1i φw+abs∞Met
24 eqid absD×D=absD×D
25 12 cnfldtopn L=MetOpenabs
26 eqid MetOpenabsD×D=MetOpenabsD×D
27 24 25 26 metrest abs∞MetDL𝑡D=MetOpenabsD×D
28 17 19 27 sylancr φL𝑡D=MetOpenabsD×D
29 11 28 eqtrid φK=MetOpenabsD×D
30 29 oveq1d φKCnPL=MetOpenabsD×DCnPL
31 30 fveq1d φKCnPLC=MetOpenabsD×DCnPLC
32 9 31 eleqtrd φFMetOpenabsD×DCnPLC
33 32 adantr φw+FMetOpenabsD×DCnPLC
34 simpr φw+w+
35 26 25 metcnpi2 absD×D∞MetDabs∞MetFMetOpenabsD×DCnPLCw+v+yDyabsD×DC<vFyabsFC<w
36 22 23 33 34 35 syl22anc φw+v+yDyabsD×DC<vFyabsFC<w
37 simpr φw+v+yDyD
38 15 ad2antrr φw+v+yDCD
39 37 38 ovresd φw+v+yDyabsD×DC=yabsC
40 19 adantr φw+v+D
41 40 sselda φw+v+yDy
42 iccssre ABAB
43 2 3 42 syl2anc φAB
44 43 18 sstrdi φAB
45 ioossicc ABAB
46 45 8 sselid φCAB
47 44 46 sseldd φC
48 47 ad2antrr φw+v+yDC
49 eqid abs=abs
50 49 cnmetdval yCyabsC=yC
51 41 48 50 syl2anc φw+v+yDyabsC=yC
52 39 51 eqtrd φw+v+yDyabsD×DC=yC
53 52 breq1d φw+v+yDyabsD×DC<vyC<v
54 14 adantr φw+v+F:D
55 54 ffvelcdmda φw+v+yDFy
56 16 ad2antrr φw+v+yDFC
57 49 cnmetdval FyFCFyabsFC=FyFC
58 55 56 57 syl2anc φw+v+yDFyabsFC=FyFC
59 58 breq1d φw+v+yDFyabsFC<wFyFC<w
60 53 59 imbi12d φw+v+yDyabsD×DC<vFyabsFC<wyC<vFyFC<w
61 60 ralbidva φw+v+yDyabsD×DC<vFyabsFC<wyDyC<vFyFC<w
62 simprll φw+v+sABCyDyC<vFyFC<wsC<vsABC
63 eldifsni sABCsC
64 62 63 syl φw+v+sABCyDyC<vFyFC<wsC<vsC
65 2 ad2antrr φw+v+sABCyDyC<vFyFC<wsC<vA
66 3 ad2antrr φw+v+sABCyDyC<vFyFC<wsC<vB
67 4 ad2antrr φw+v+sABCyDyC<vFyFC<wsC<vAB
68 5 ad2antrr φw+v+sABCyDyC<vFyFC<wsC<vABD
69 6 ad2antrr φw+v+sABCyDyC<vFyFC<wsC<vD
70 7 ad2antrr φw+v+sABCyDyC<vFyFC<wsC<vF𝐿1
71 8 ad2antrr φw+v+sABCyDyC<vFyFC<wsC<vCAB
72 9 ad2antrr φw+v+sABCyDyC<vFyFC<wsC<vFKCnPLC
73 simplrl φw+v+sABCyDyC<vFyFC<wsC<vw+
74 simplrr φw+v+sABCyDyC<vFyFC<wsC<vv+
75 simprlr φw+v+sABCyDyC<vFyFC<wsC<vyDyC<vFyFC<w
76 fvoveq1 y=uyC=uC
77 76 breq1d y=uyC<vuC<v
78 77 imbrov2fvoveq y=uyC<vFyFC<wuC<vFuFC<w
79 78 rspccva yDyC<vFyFC<wuDuC<vFuFC<w
80 75 79 sylan φw+v+sABCyDyC<vFyFC<wsC<vuDuC<vFuFC<w
81 62 eldifad φw+v+sABCyDyC<vFyFC<wsC<vsAB
82 simprr φw+v+sABCyDyC<vFyFC<wsC<vsC<v
83 1 65 66 67 68 69 70 71 72 10 11 12 13 73 74 80 81 82 ftc1lem5 φw+v+sABCyDyC<vFyFC<wsC<vsCHsFC<w
84 64 83 mpdan φw+v+sABCyDyC<vFyFC<wsC<vHsFC<w
85 84 expr φw+v+sABCyDyC<vFyFC<wsC<vHsFC<w
86 85 adantld φw+v+sABCyDyC<vFyFC<wsCsC<vHsFC<w
87 86 expr φw+v+sABCyDyC<vFyFC<wsCsC<vHsFC<w
88 87 ralrimdva φw+v+yDyC<vFyFC<wsABCsCsC<vHsFC<w
89 61 88 sylbid φw+v+yDyabsD×DC<vFyabsFC<wsABCsCsC<vHsFC<w
90 89 anassrs φw+v+yDyabsD×DC<vFyabsFC<wsABCsCsC<vHsFC<w
91 90 reximdva φw+v+yDyabsD×DC<vFyabsFC<wv+sABCsCsC<vHsFC<w
92 36 91 mpd φw+v+sABCsCsC<vHsFC<w
93 92 ralrimiva φw+v+sABCsCsC<vHsFC<w
94 1 2 3 4 5 6 7 14 ftc1lem2 φG:AB
95 94 44 46 dvlem φzABCGzGCzC
96 95 13 fmptd φH:ABC
97 44 ssdifssd φABC
98 96 97 47 ellimc3 φFCHlimCFCw+v+sABCsCsC<vHsFC<w
99 16 93 98 mpbir2and φFCHlimC