Metamath Proof Explorer


Theorem ghmqusker

Description: A surjective group homomorphism F from G to H induces an isomorphism J from Q to H , where Q is the factor group of G by F 's kernel K . (Contributed by Thierry Arnoux, 15-Feb-2025)

Ref Expression
Hypotheses ghmqusker.1 0˙=0H
ghmqusker.f φFGGrpHomH
ghmqusker.k K=F-10˙
ghmqusker.q Q=G/𝑠G~QGK
ghmqusker.j J=qBaseQFq
ghmqusker.s φranF=BaseH
Assertion ghmqusker φJQGrpIsoH

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0˙=0H
2 ghmqusker.f φFGGrpHomH
3 ghmqusker.k K=F-10˙
4 ghmqusker.q Q=G/𝑠G~QGK
5 ghmqusker.j J=qBaseQFq
6 ghmqusker.s φranF=BaseH
7 1 2 3 4 5 ghmquskerlem3 φJQGrpHomH
8 ghmgrp1 FGGrpHomHGGrp
9 2 8 syl φGGrp
10 9 ad4antr φrBaseQxrJr=FxJr=0˙GGrp
11 1 ghmker FGGrpHomHF-10˙NrmSGrpG
12 2 11 syl φF-10˙NrmSGrpG
13 3 12 eqeltrid φKNrmSGrpG
14 nsgsubg KNrmSGrpGKSubGrpG
15 13 14 syl φKSubGrpG
16 15 ad4antr φrBaseQxrJr=FxJr=0˙KSubGrpG
17 eqid BaseG=BaseG
18 eqid BaseH=BaseH
19 17 18 ghmf FGGrpHomHF:BaseGBaseH
20 2 19 syl φF:BaseGBaseH
21 20 ffnd φFFnBaseG
22 21 ad3antrrr φrBaseQxrJr=FxFFnBaseG
23 22 adantr φrBaseQxrJr=FxJr=0˙FFnBaseG
24 4 a1i φQ=G/𝑠G~QGK
25 eqidd φBaseG=BaseG
26 ovexd φG~QGKV
27 24 25 26 9 qusbas φBaseG/G~QGK=BaseQ
28 eqid G~QGK=G~QGK
29 17 28 eqger KSubGrpGG~QGKErBaseG
30 13 14 29 3syl φG~QGKErBaseG
31 30 qsss φBaseG/G~QGK𝒫BaseG
32 27 31 eqsstrrd φBaseQ𝒫BaseG
33 32 sselda φrBaseQr𝒫BaseG
34 33 elpwid φrBaseQrBaseG
35 34 sselda φrBaseQxrxBaseG
36 35 adantr φrBaseQxrJr=FxxBaseG
37 36 adantr φrBaseQxrJr=FxJr=0˙xBaseG
38 simpr φrBaseQxrJr=FxJr=Fx
39 38 eqeq1d φrBaseQxrJr=FxJr=0˙Fx=0˙
40 39 biimpa φrBaseQxrJr=FxJr=0˙Fx=0˙
41 fniniseg FFnBaseGxF-10˙xBaseGFx=0˙
42 41 biimpar FFnBaseGxBaseGFx=0˙xF-10˙
43 23 37 40 42 syl12anc φrBaseQxrJr=FxJr=0˙xF-10˙
44 43 3 eleqtrrdi φrBaseQxrJr=FxJr=0˙xK
45 28 eqg0el GGrpKSubGrpGxG~QGK=KxK
46 45 biimpar GGrpKSubGrpGxKxG~QGK=K
47 10 16 44 46 syl21anc φrBaseQxrJr=FxJr=0˙xG~QGK=K
48 30 ad4antr φrBaseQxrJr=FxJr=0˙G~QGKErBaseG
49 simpr φrBaseQrBaseQ
50 27 adantr φrBaseQBaseG/G~QGK=BaseQ
51 49 50 eleqtrrd φrBaseQrBaseG/G~QGK
52 51 ad3antrrr φrBaseQxrJr=FxJr=0˙rBaseG/G~QGK
53 simpllr φrBaseQxrJr=FxJr=0˙xr
54 qsel G~QGKErBaseGrBaseG/G~QGKxrr=xG~QGK
55 48 52 53 54 syl3anc φrBaseQxrJr=FxJr=0˙r=xG~QGK
56 eqid 0G=0G
57 17 28 56 eqgid KSubGrpG0GG~QGK=K
58 15 57 syl φ0GG~QGK=K
59 58 ad4antr φrBaseQxrJr=FxJr=0˙0GG~QGK=K
60 47 55 59 3eqtr4d φrBaseQxrJr=FxJr=0˙r=0GG~QGK
61 4 56 qus0 KNrmSGrpG0GG~QGK=0Q
62 13 61 syl φ0GG~QGK=0Q
63 62 ad3antrrr φrBaseQxrJr=Fx0GG~QGK=0Q
64 63 adantr φrBaseQxrJr=FxJr=0˙0GG~QGK=0Q
65 60 64 eqtrd φrBaseQxrJr=FxJr=0˙r=0Q
66 63 eqeq2d φrBaseQxrJr=Fxr=0GG~QGKr=0Q
67 66 biimpar φrBaseQxrJr=Fxr=0Qr=0GG~QGK
68 67 fveq2d φrBaseQxrJr=Fxr=0QJr=J0GG~QGK
69 2 adantr φrBaseQFGGrpHomH
70 69 ad3antrrr φrBaseQxrJr=Fxr=0QFGGrpHomH
71 17 56 grpidcl GGrp0GBaseG
72 9 71 syl φ0GBaseG
73 72 ad4antr φrBaseQxrJr=Fxr=0Q0GBaseG
74 1 70 3 4 5 73 ghmquskerlem1 φrBaseQxrJr=Fxr=0QJ0GG~QGK=F0G
75 56 1 ghmid FGGrpHomHF0G=0˙
76 2 75 syl φF0G=0˙
77 76 ad4antr φrBaseQxrJr=Fxr=0QF0G=0˙
78 68 74 77 3eqtrd φrBaseQxrJr=Fxr=0QJr=0˙
79 65 78 impbida φrBaseQxrJr=FxJr=0˙r=0Q
80 1 69 3 4 5 49 ghmquskerlem2 φrBaseQxrJr=Fx
81 79 80 r19.29a φrBaseQJr=0˙r=0Q
82 81 pm5.32da φrBaseQJr=0˙rBaseQr=0Q
83 simpr φr=0Qr=0Q
84 4 qusgrp KNrmSGrpGQGrp
85 13 84 syl φQGrp
86 eqid BaseQ=BaseQ
87 eqid 0Q=0Q
88 86 87 grpidcl QGrp0QBaseQ
89 85 88 syl φ0QBaseQ
90 89 adantr φr=0Q0QBaseQ
91 83 90 eqeltrd φr=0QrBaseQ
92 91 ex φr=0QrBaseQ
93 92 pm4.71rd φr=0QrBaseQr=0Q
94 82 93 bitr4d φrBaseQJr=0˙r=0Q
95 2 adantr φqBaseQFGGrpHomH
96 95 imaexd φqBaseQFqV
97 96 uniexd φqBaseQFqV
98 5 a1i φJ=qBaseQFq
99 22 36 fnfvelrnd φrBaseQxrJr=FxFxranF
100 6 ad3antrrr φrBaseQxrJr=FxranF=BaseH
101 99 100 eleqtrd φrBaseQxrJr=FxFxBaseH
102 38 101 eqeltrd φrBaseQxrJr=FxJrBaseH
103 102 80 r19.29a φrBaseQJrBaseH
104 97 98 103 fmpt2d φJ:BaseQBaseH
105 104 ffnd φJFnBaseQ
106 fniniseg JFnBaseQrJ-10˙rBaseQJr=0˙
107 105 106 syl φrJ-10˙rBaseQJr=0˙
108 velsn r0Qr=0Q
109 108 a1i φr0Qr=0Q
110 94 107 109 3bitr4d φrJ-10˙r0Q
111 110 eqrdv φJ-10˙=0Q
112 86 18 87 1 kerf1ghm JQGrpHomHJ:BaseQ1-1BaseHJ-10˙=0Q
113 112 biimpar JQGrpHomHJ-10˙=0QJ:BaseQ1-1BaseH
114 7 111 113 syl2anc φJ:BaseQ1-1BaseH
115 f1f1orn J:BaseQ1-1BaseHJ:BaseQ1-1 ontoranJ
116 114 115 syl φJ:BaseQ1-1 ontoranJ
117 simpr φxBaseGxBaseG
118 ovex G~QGKV
119 118 ecelqsi xBaseGxG~QGKBaseG/G~QGK
120 117 119 syl φxBaseGxG~QGKBaseG/G~QGK
121 27 adantr φxBaseGBaseG/G~QGK=BaseQ
122 120 121 eleqtrd φxBaseGxG~QGKBaseQ
123 elqsi rBaseG/G~QGKxBaseGr=xG~QGK
124 51 123 syl φrBaseQxBaseGr=xG~QGK
125 simpr φxBaseGr=xG~QGKr=xG~QGK
126 125 fveq2d φxBaseGr=xG~QGKJr=JxG~QGK
127 2 adantr φxBaseGFGGrpHomH
128 1 127 3 4 5 117 ghmquskerlem1 φxBaseGJxG~QGK=Fx
129 128 adantr φxBaseGr=xG~QGKJxG~QGK=Fx
130 126 129 eqtrd φxBaseGr=xG~QGKJr=Fx
131 130 3impa φxBaseGr=xG~QGKJr=Fx
132 131 eqeq1d φxBaseGr=xG~QGKJr=yFx=y
133 122 124 132 rexxfrd2 φrBaseQJr=yxBaseGFx=y
134 fvelrnb JFnBaseQyranJrBaseQJr=y
135 105 134 syl φyranJrBaseQJr=y
136 fvelrnb FFnBaseGyranFxBaseGFx=y
137 21 136 syl φyranFxBaseGFx=y
138 133 135 137 3bitr4rd φyranFyranJ
139 138 eqrdv φranF=ranJ
140 139 6 eqtr3d φranJ=BaseH
141 140 f1oeq3d φJ:BaseQ1-1 ontoranJJ:BaseQ1-1 ontoBaseH
142 116 141 mpbid φJ:BaseQ1-1 ontoBaseH
143 86 18 isgim JQGrpIsoHJQGrpHomHJ:BaseQ1-1 ontoBaseH
144 7 142 143 sylanbrc φJQGrpIsoH