Metamath Proof Explorer


Theorem gsummoncoe1fzo

Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses gsummoncoe1fzo.p P=Poly1R
gsummoncoe1fzo.b B=BaseP
gsummoncoe1fzo.x X=var1R
gsummoncoe1fzo.e ×˙=mulGrpP
gsummoncoe1fzo.r φRRing
gsummoncoe1fzo.k K=BaseR
gsummoncoe1fzo.m ˙=P
gsummoncoe1fzo.1 0˙=0R
gsummoncoe1fzo.a φk0..^NAK
gsummoncoe1fzo.l φL0..^N
gsummoncoe1fzo.n φN0
gsummoncoe1fzo.2 k=LA=C
Assertion gsummoncoe1fzo φcoe1Pk0..^NA˙k×˙XL=C

Proof

Step Hyp Ref Expression
1 gsummoncoe1fzo.p P=Poly1R
2 gsummoncoe1fzo.b B=BaseP
3 gsummoncoe1fzo.x X=var1R
4 gsummoncoe1fzo.e ×˙=mulGrpP
5 gsummoncoe1fzo.r φRRing
6 gsummoncoe1fzo.k K=BaseR
7 gsummoncoe1fzo.m ˙=P
8 gsummoncoe1fzo.1 0˙=0R
9 gsummoncoe1fzo.a φk0..^NAK
10 gsummoncoe1fzo.l φL0..^N
11 gsummoncoe1fzo.n φN0
12 gsummoncoe1fzo.2 k=LA=C
13 eqid 0P=0P
14 1 ply1ring RRingPRing
15 5 14 syl φPRing
16 15 ringcmnd φPCMnd
17 nn0ex 0V
18 17 a1i φ0V
19 simpr φk00..^Nk00..^N
20 19 eldifbd φk00..^N¬k0..^N
21 20 iffalsed φk00..^Nifk0..^NA0˙=0˙
22 21 oveq1d φk00..^Nifk0..^NA0˙˙k×˙X=0˙˙k×˙X
23 5 adantr φk00..^NRRing
24 19 eldifad φk00..^Nk0
25 eqid mulGrpP=mulGrpP
26 25 2 mgpbas B=BasemulGrpP
27 25 ringmgp PRingmulGrpPMnd
28 15 27 syl φmulGrpPMnd
29 28 adantr φk0mulGrpPMnd
30 simpr φk0k0
31 3 1 2 vr1cl RRingXB
32 5 31 syl φXB
33 32 adantr φk0XB
34 26 4 29 30 33 mulgnn0cld φk0k×˙XB
35 24 34 syldan φk00..^Nk×˙XB
36 1 2 7 8 ply10s0 RRingk×˙XB0˙˙k×˙X=0P
37 23 35 36 syl2anc φk00..^N0˙˙k×˙X=0P
38 22 37 eqtrd φk00..^Nifk0..^NA0˙˙k×˙X=0P
39 fzofi 0..^NFin
40 39 a1i φ0..^NFin
41 1 ply1lmod RRingPLMod
42 5 41 syl φPLMod
43 42 adantr φk0PLMod
44 9 r19.21bi φk0..^NAK
45 44 adantlr φk0k0..^NAK
46 6 8 ring0cl RRing0˙K
47 5 46 syl φ0˙K
48 47 ad2antrr φk0¬k0..^N0˙K
49 45 48 ifclda φk0ifk0..^NA0˙K
50 1 ply1sca RRingR=ScalarP
51 5 50 syl φR=ScalarP
52 51 fveq2d φBaseR=BaseScalarP
53 6 52 eqtrid φK=BaseScalarP
54 53 adantr φk0K=BaseScalarP
55 49 54 eleqtrd φk0ifk0..^NA0˙BaseScalarP
56 eqid ScalarP=ScalarP
57 eqid BaseScalarP=BaseScalarP
58 2 56 7 57 lmodvscl PLModifk0..^NA0˙BaseScalarPk×˙XBifk0..^NA0˙˙k×˙XB
59 43 55 34 58 syl3anc φk0ifk0..^NA0˙˙k×˙XB
60 fzo0ssnn0 0..^N0
61 60 a1i φ0..^N0
62 2 13 16 18 38 40 59 61 gsummptres2 φPk0ifk0..^NA0˙˙k×˙X=Pk0..^Nifk0..^NA0˙˙k×˙X
63 simpr φk0..^Nk0..^N
64 63 iftrued φk0..^Nifk0..^NA0˙=A
65 64 oveq1d φk0..^Nifk0..^NA0˙˙k×˙X=A˙k×˙X
66 65 mpteq2dva φk0..^Nifk0..^NA0˙˙k×˙X=k0..^NA˙k×˙X
67 66 oveq2d φPk0..^Nifk0..^NA0˙˙k×˙X=Pk0..^NA˙k×˙X
68 62 67 eqtrd φPk0ifk0..^NA0˙˙k×˙X=Pk0..^NA˙k×˙X
69 68 fveq2d φcoe1Pk0ifk0..^NA0˙˙k×˙X=coe1Pk0..^NA˙k×˙X
70 69 fveq1d φcoe1Pk0ifk0..^NA0˙˙k×˙XL=coe1Pk0..^NA˙k×˙XL
71 49 ralrimiva φk0ifk0..^NA0˙K
72 eqid k0ifk0..^NA0˙=k0ifk0..^NA0˙
73 72 18 40 44 47 mptiffisupp φfinSupp0˙k0ifk0..^NA0˙
74 60 10 sselid φL0
75 1 2 3 4 5 6 7 8 71 73 74 gsummoncoe1 φcoe1Pk0ifk0..^NA0˙˙k×˙XL=L/kifk0..^NA0˙
76 70 75 eqtr3d φcoe1Pk0..^NA˙k×˙XL=L/kifk0..^NA0˙
77 eleq1 k=Lk0..^NL0..^N
78 77 12 ifbieq1d k=Lifk0..^NA0˙=ifL0..^NC0˙
79 78 adantl φk=Lifk0..^NA0˙=ifL0..^NC0˙
80 10 79 csbied φL/kifk0..^NA0˙=ifL0..^NC0˙
81 10 iftrued φifL0..^NC0˙=C
82 76 80 81 3eqtrd φcoe1Pk0..^NA˙k×˙XL=C