Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by Thierry Arnoux, 20-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummoncoe1fzo.p | |
|
gsummoncoe1fzo.b | |
||
gsummoncoe1fzo.x | |
||
gsummoncoe1fzo.e | |
||
gsummoncoe1fzo.r | |
||
gsummoncoe1fzo.k | |
||
gsummoncoe1fzo.m | |
||
gsummoncoe1fzo.1 | |
||
gsummoncoe1fzo.a | |
||
gsummoncoe1fzo.l | |
||
gsummoncoe1fzo.n | |
||
gsummoncoe1fzo.2 | |
||
Assertion | gsummoncoe1fzo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummoncoe1fzo.p | |
|
2 | gsummoncoe1fzo.b | |
|
3 | gsummoncoe1fzo.x | |
|
4 | gsummoncoe1fzo.e | |
|
5 | gsummoncoe1fzo.r | |
|
6 | gsummoncoe1fzo.k | |
|
7 | gsummoncoe1fzo.m | |
|
8 | gsummoncoe1fzo.1 | |
|
9 | gsummoncoe1fzo.a | |
|
10 | gsummoncoe1fzo.l | |
|
11 | gsummoncoe1fzo.n | |
|
12 | gsummoncoe1fzo.2 | |
|
13 | eqid | |
|
14 | 1 | ply1ring | |
15 | 5 14 | syl | |
16 | 15 | ringcmnd | |
17 | nn0ex | |
|
18 | 17 | a1i | |
19 | simpr | |
|
20 | 19 | eldifbd | |
21 | 20 | iffalsed | |
22 | 21 | oveq1d | |
23 | 5 | adantr | |
24 | 19 | eldifad | |
25 | eqid | |
|
26 | 25 2 | mgpbas | |
27 | 25 | ringmgp | |
28 | 15 27 | syl | |
29 | 28 | adantr | |
30 | simpr | |
|
31 | 3 1 2 | vr1cl | |
32 | 5 31 | syl | |
33 | 32 | adantr | |
34 | 26 4 29 30 33 | mulgnn0cld | |
35 | 24 34 | syldan | |
36 | 1 2 7 8 | ply10s0 | |
37 | 23 35 36 | syl2anc | |
38 | 22 37 | eqtrd | |
39 | fzofi | |
|
40 | 39 | a1i | |
41 | 1 | ply1lmod | |
42 | 5 41 | syl | |
43 | 42 | adantr | |
44 | 9 | r19.21bi | |
45 | 44 | adantlr | |
46 | 6 8 | ring0cl | |
47 | 5 46 | syl | |
48 | 47 | ad2antrr | |
49 | 45 48 | ifclda | |
50 | 1 | ply1sca | |
51 | 5 50 | syl | |
52 | 51 | fveq2d | |
53 | 6 52 | eqtrid | |
54 | 53 | adantr | |
55 | 49 54 | eleqtrd | |
56 | eqid | |
|
57 | eqid | |
|
58 | 2 56 7 57 | lmodvscl | |
59 | 43 55 34 58 | syl3anc | |
60 | fzo0ssnn0 | |
|
61 | 60 | a1i | |
62 | 2 13 16 18 38 40 59 61 | gsummptres2 | |
63 | simpr | |
|
64 | 63 | iftrued | |
65 | 64 | oveq1d | |
66 | 65 | mpteq2dva | |
67 | 66 | oveq2d | |
68 | 62 67 | eqtrd | |
69 | 68 | fveq2d | |
70 | 69 | fveq1d | |
71 | 49 | ralrimiva | |
72 | eqid | |
|
73 | 72 18 40 44 47 | mptiffisupp | |
74 | 60 10 | sselid | |
75 | 1 2 3 4 5 6 7 8 71 73 74 | gsummoncoe1 | |
76 | 70 75 | eqtr3d | |
77 | eleq1 | |
|
78 | 77 12 | ifbieq1d | |
79 | 78 | adantl | |
80 | 10 79 | csbied | |
81 | 10 | iftrued | |
82 | 76 80 81 | 3eqtrd | |