| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gzrng.1 |
|
| 2 |
|
gzsubrg |
|
| 3 |
1
|
subrgbas |
|
| 4 |
2 3
|
ax-mp |
|
| 5 |
|
eqid |
|
| 6 |
4 5
|
unitcl |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
1 7 5 8
|
subrginv |
|
| 10 |
2 9
|
mpan |
|
| 11 |
|
gzcn |
|
| 12 |
6 11
|
syl |
|
| 13 |
|
0red |
|
| 14 |
|
1re |
|
| 15 |
14
|
a1i |
|
| 16 |
12
|
abscld |
|
| 17 |
|
0lt1 |
|
| 18 |
17
|
a1i |
|
| 19 |
1
|
gzrngunitlem |
|
| 20 |
13 15 16 18 19
|
ltletrd |
|
| 21 |
20
|
gt0ne0d |
|
| 22 |
12
|
abs00ad |
|
| 23 |
22
|
necon3bid |
|
| 24 |
21 23
|
mpbid |
|
| 25 |
|
cnfldinv |
|
| 26 |
12 24 25
|
syl2anc |
|
| 27 |
10 26
|
eqtr3d |
|
| 28 |
1
|
subrgring |
|
| 29 |
2 28
|
ax-mp |
|
| 30 |
5 8
|
unitinvcl |
|
| 31 |
29 30
|
mpan |
|
| 32 |
27 31
|
eqeltrrd |
|
| 33 |
1
|
gzrngunitlem |
|
| 34 |
32 33
|
syl |
|
| 35 |
|
1cnd |
|
| 36 |
35 12 24
|
absdivd |
|
| 37 |
34 36
|
breqtrd |
|
| 38 |
|
1div1e1 |
|
| 39 |
|
abs1 |
|
| 40 |
39
|
eqcomi |
|
| 41 |
40
|
oveq1i |
|
| 42 |
37 38 41
|
3brtr4g |
|
| 43 |
|
lerec |
|
| 44 |
16 20 15 18 43
|
syl22anc |
|
| 45 |
42 44
|
mpbird |
|
| 46 |
|
letri3 |
|
| 47 |
16 14 46
|
sylancl |
|
| 48 |
45 19 47
|
mpbir2and |
|
| 49 |
6 48
|
jca |
|
| 50 |
11
|
adantr |
|
| 51 |
|
simpr |
|
| 52 |
|
ax-1ne0 |
|
| 53 |
52
|
a1i |
|
| 54 |
51 53
|
eqnetrd |
|
| 55 |
|
fveq2 |
|
| 56 |
|
abs0 |
|
| 57 |
55 56
|
eqtrdi |
|
| 58 |
57
|
necon3i |
|
| 59 |
54 58
|
syl |
|
| 60 |
|
eldifsn |
|
| 61 |
50 59 60
|
sylanbrc |
|
| 62 |
|
simpl |
|
| 63 |
50 59 25
|
syl2anc |
|
| 64 |
50
|
absvalsqd |
|
| 65 |
51
|
oveq1d |
|
| 66 |
|
sq1 |
|
| 67 |
65 66
|
eqtrdi |
|
| 68 |
64 67
|
eqtr3d |
|
| 69 |
68
|
oveq1d |
|
| 70 |
50
|
cjcld |
|
| 71 |
70 50 59
|
divcan3d |
|
| 72 |
63 69 71
|
3eqtr2d |
|
| 73 |
|
gzcjcl |
|
| 74 |
73
|
adantr |
|
| 75 |
72 74
|
eqeltrd |
|
| 76 |
|
cnfldbas |
|
| 77 |
|
cnfld0 |
|
| 78 |
|
cndrng |
|
| 79 |
76 77 78
|
drngui |
|
| 80 |
1 79 5 7
|
subrgunit |
|
| 81 |
2 80
|
ax-mp |
|
| 82 |
61 62 75 81
|
syl3anbrc |
|
| 83 |
49 82
|
impbii |
|