Metamath Proof Explorer


Theorem hdmapinvlem4

Description: Part 1.1 of Proposition 1 of Baer p. 110. We use C , D , I , and J for Baer's u, v, s, and t. Our unit vector E has the required properties for his w by hdmapevec2 . Our ( ( SD )C ) means his f(u,v) (note argument reversal). (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hdmapinvlem3.h H=LHypK
hdmapinvlem3.e E=IBaseKILTrnKW
hdmapinvlem3.o O=ocHKW
hdmapinvlem3.u U=DVecHKW
hdmapinvlem3.v V=BaseU
hdmapinvlem3.p +˙=+U
hdmapinvlem3.m -˙=-U
hdmapinvlem3.q ·˙=U
hdmapinvlem3.r R=ScalarU
hdmapinvlem3.b B=BaseR
hdmapinvlem3.t ×˙=R
hdmapinvlem3.z 0˙=0R
hdmapinvlem3.s S=HDMapKW
hdmapinvlem3.g G=HGMapKW
hdmapinvlem3.k φKHLWH
hdmapinvlem3.c φCOE
hdmapinvlem3.d φDOE
hdmapinvlem3.i φIB
hdmapinvlem3.j φJB
hdmapinvlem3.ij φI×˙GJ=SDC
Assertion hdmapinvlem4 φJ×˙GI=SCD

Proof

Step Hyp Ref Expression
1 hdmapinvlem3.h H=LHypK
2 hdmapinvlem3.e E=IBaseKILTrnKW
3 hdmapinvlem3.o O=ocHKW
4 hdmapinvlem3.u U=DVecHKW
5 hdmapinvlem3.v V=BaseU
6 hdmapinvlem3.p +˙=+U
7 hdmapinvlem3.m -˙=-U
8 hdmapinvlem3.q ·˙=U
9 hdmapinvlem3.r R=ScalarU
10 hdmapinvlem3.b B=BaseR
11 hdmapinvlem3.t ×˙=R
12 hdmapinvlem3.z 0˙=0R
13 hdmapinvlem3.s S=HDMapKW
14 hdmapinvlem3.g G=HGMapKW
15 hdmapinvlem3.k φKHLWH
16 hdmapinvlem3.c φCOE
17 hdmapinvlem3.d φDOE
18 hdmapinvlem3.i φIB
19 hdmapinvlem3.j φJB
20 hdmapinvlem3.ij φI×˙GJ=SDC
21 eqid -R=-R
22 1 4 15 dvhlmod φULMod
23 eqid BaseK=BaseK
24 eqid LTrnKW=LTrnKW
25 eqid 0U=0U
26 1 23 24 4 5 25 2 15 dvheveccl φEV0U
27 26 eldifad φEV
28 5 9 8 10 lmodvscl ULModJBEVJ·˙EV
29 22 19 27 28 syl3anc φJ·˙EV
30 27 snssd φEV
31 1 4 5 3 dochssv KHLWHEVOEV
32 15 30 31 syl2anc φOEV
33 32 17 sseldd φDV
34 5 9 8 10 lmodvscl ULModIBEVI·˙EV
35 22 18 27 34 syl3anc φI·˙EV
36 32 16 sseldd φCV
37 5 6 lmodvacl ULModI·˙EVCVI·˙E+˙CV
38 22 35 36 37 syl3anc φI·˙E+˙CV
39 1 4 5 7 9 21 13 15 29 33 38 hdmaplns1 φSI·˙E+˙CJ·˙E-˙D=SI·˙E+˙CJ·˙E-RSI·˙E+˙CD
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 hdmapinvlem3 φSJ·˙E-˙DI·˙E+˙C=0˙
41 5 7 lmodvsubcl ULModJ·˙EVDVJ·˙E-˙DV
42 22 29 33 41 syl3anc φJ·˙E-˙DV
43 1 4 5 9 12 13 15 42 38 hdmapip0com φSJ·˙E-˙DI·˙E+˙C=0˙SI·˙E+˙CJ·˙E-˙D=0˙
44 40 43 mpbid φSI·˙E+˙CJ·˙E-˙D=0˙
45 1 4 5 8 9 10 11 13 15 27 38 19 hdmaplnm1 φSI·˙E+˙CJ·˙E=J×˙SI·˙E+˙CE
46 eqid +R=+R
47 1 4 5 6 9 46 13 15 27 35 36 hdmaplna2 φSI·˙E+˙CE=SI·˙EE+RSCE
48 1 2 3 4 5 9 10 11 12 13 15 16 hdmapinvlem2 φSCE=0˙
49 48 oveq2d φSI·˙EE+RSCE=SI·˙EE+R0˙
50 9 lmodring ULModRRing
51 22 50 syl φRRing
52 ringgrp RRingRGrp
53 51 52 syl φRGrp
54 1 4 5 9 10 13 15 27 35 hdmapipcl φSI·˙EEB
55 10 46 12 grprid RGrpSI·˙EEBSI·˙EE+R0˙=SI·˙EE
56 53 54 55 syl2anc φSI·˙EE+R0˙=SI·˙EE
57 1 4 5 8 9 10 11 13 14 15 27 27 18 hdmapglnm2 φSI·˙EE=SEE×˙GI
58 eqid HVMapKW=HVMapKW
59 eqid 1R=1R
60 1 2 58 13 15 4 9 59 hdmapevec2 φSEE=1R
61 60 oveq1d φSEE×˙GI=1R×˙GI
62 1 4 9 10 14 15 18 hgmapcl φGIB
63 10 11 59 ringlidm RRingGIB1R×˙GI=GI
64 51 62 63 syl2anc φ1R×˙GI=GI
65 61 64 eqtrd φSEE×˙GI=GI
66 56 57 65 3eqtrd φSI·˙EE+R0˙=GI
67 47 49 66 3eqtrd φSI·˙E+˙CE=GI
68 67 oveq2d φJ×˙SI·˙E+˙CE=J×˙GI
69 45 68 eqtrd φSI·˙E+˙CJ·˙E=J×˙GI
70 1 4 5 6 9 46 13 15 33 35 36 hdmaplna2 φSI·˙E+˙CD=SI·˙ED+RSCD
71 1 4 5 8 9 10 11 13 14 15 33 27 18 hdmapglnm2 φSI·˙ED=SED×˙GI
72 1 2 3 4 5 9 10 11 12 13 15 17 hdmapinvlem1 φSED=0˙
73 72 oveq1d φSED×˙GI=0˙×˙GI
74 10 11 12 ringlz RRingGIB0˙×˙GI=0˙
75 51 62 74 syl2anc φ0˙×˙GI=0˙
76 71 73 75 3eqtrd φSI·˙ED=0˙
77 76 oveq1d φSI·˙ED+RSCD=0˙+RSCD
78 1 4 5 9 10 13 15 33 36 hdmapipcl φSCDB
79 10 46 12 grplid RGrpSCDB0˙+RSCD=SCD
80 53 78 79 syl2anc φ0˙+RSCD=SCD
81 70 77 80 3eqtrd φSI·˙E+˙CD=SCD
82 69 81 oveq12d φSI·˙E+˙CJ·˙E-RSI·˙E+˙CD=J×˙GI-RSCD
83 39 44 82 3eqtr3rd φJ×˙GI-RSCD=0˙
84 9 10 11 lmodmcl ULModJBGIBJ×˙GIB
85 22 19 62 84 syl3anc φJ×˙GIB
86 10 12 21 grpsubeq0 RGrpJ×˙GIBSCDBJ×˙GI-RSCD=0˙J×˙GI=SCD
87 53 85 78 86 syl3anc φJ×˙GI-RSCD=0˙J×˙GI=SCD
88 83 87 mpbid φJ×˙GI=SCD