Metamath Proof Explorer


Theorem heiborlem4

Description: Lemma for heibor . Using the function T constructed in heiborlem3 , construct an infinite path in G . (Contributed by Jeff Madsen, 23-Jan-2014)

Ref Expression
Hypotheses heibor.1 J=MetOpenD
heibor.3 K=u|¬v𝒫UFinuv
heibor.4 G=yn|n0yFnyBnK
heibor.5 B=zX,m0zballD12m
heibor.6 φDCMetX
heibor.7 φF:0𝒫XFin
heibor.8 φn0X=yFnyBn
heibor.9 φxGTxG2ndx+1BxTxB2ndx+1K
heibor.10 φCG0
heibor.11 S=seq0Tm0ifm=0Cm1
Assertion heiborlem4 φA0SAGA

Proof

Step Hyp Ref Expression
1 heibor.1 J=MetOpenD
2 heibor.3 K=u|¬v𝒫UFinuv
3 heibor.4 G=yn|n0yFnyBnK
4 heibor.5 B=zX,m0zballD12m
5 heibor.6 φDCMetX
6 heibor.7 φF:0𝒫XFin
7 heibor.8 φn0X=yFnyBn
8 heibor.9 φxGTxG2ndx+1BxTxB2ndx+1K
9 heibor.10 φCG0
10 heibor.11 S=seq0Tm0ifm=0Cm1
11 fveq2 x=0Sx=S0
12 id x=0x=0
13 11 12 breq12d x=0SxGxS0G0
14 13 imbi2d x=0φSxGxφS0G0
15 fveq2 x=kSx=Sk
16 id x=kx=k
17 15 16 breq12d x=kSxGxSkGk
18 17 imbi2d x=kφSxGxφSkGk
19 fveq2 x=k+1Sx=Sk+1
20 id x=k+1x=k+1
21 19 20 breq12d x=k+1SxGxSk+1Gk+1
22 21 imbi2d x=k+1φSxGxφSk+1Gk+1
23 fveq2 x=ASx=SA
24 id x=Ax=A
25 23 24 breq12d x=ASxGxSAGA
26 25 imbi2d x=AφSxGxφSAGA
27 10 fveq1i S0=seq0Tm0ifm=0Cm10
28 0z 0
29 seq1 0seq0Tm0ifm=0Cm10=m0ifm=0Cm10
30 28 29 ax-mp seq0Tm0ifm=0Cm10=m0ifm=0Cm10
31 27 30 eqtri S0=m0ifm=0Cm10
32 0nn0 00
33 3 relopabiv RelG
34 33 brrelex1i CG0CV
35 9 34 syl φCV
36 iftrue m=0ifm=0Cm1=C
37 eqid m0ifm=0Cm1=m0ifm=0Cm1
38 36 37 fvmptg 00CVm0ifm=0Cm10=C
39 32 35 38 sylancr φm0ifm=0Cm10=C
40 31 39 eqtrid φS0=C
41 40 9 eqbrtrd φS0G0
42 df-br SkGkSkkG
43 fveq2 x=SkkTx=TSkk
44 df-ov SkTk=TSkk
45 43 44 eqtr4di x=SkkTx=SkTk
46 fvex SkV
47 vex kV
48 46 47 op2ndd x=Skk2ndx=k
49 48 oveq1d x=Skk2ndx+1=k+1
50 45 49 breq12d x=SkkTxG2ndx+1SkTkGk+1
51 fveq2 x=SkkBx=BSkk
52 df-ov SkBk=BSkk
53 51 52 eqtr4di x=SkkBx=SkBk
54 45 49 oveq12d x=SkkTxB2ndx+1=SkTkBk+1
55 53 54 ineq12d x=SkkBxTxB2ndx+1=SkBkSkTkBk+1
56 55 eleq1d x=SkkBxTxB2ndx+1KSkBkSkTkBk+1K
57 50 56 anbi12d x=SkkTxG2ndx+1BxTxB2ndx+1KSkTkGk+1SkBkSkTkBk+1K
58 57 rspccv xGTxG2ndx+1BxTxB2ndx+1KSkkGSkTkGk+1SkBkSkTkBk+1K
59 8 58 syl φSkkGSkTkGk+1SkBkSkTkBk+1K
60 42 59 biimtrid φSkGkSkTkGk+1SkBkSkTkBk+1K
61 seqp1 k0seq0Tm0ifm=0Cm1k+1=seq0Tm0ifm=0Cm1kTm0ifm=0Cm1k+1
62 nn0uz 0=0
63 61 62 eleq2s k0seq0Tm0ifm=0Cm1k+1=seq0Tm0ifm=0Cm1kTm0ifm=0Cm1k+1
64 10 fveq1i Sk+1=seq0Tm0ifm=0Cm1k+1
65 10 fveq1i Sk=seq0Tm0ifm=0Cm1k
66 65 oveq1i SkTm0ifm=0Cm1k+1=seq0Tm0ifm=0Cm1kTm0ifm=0Cm1k+1
67 63 64 66 3eqtr4g k0Sk+1=SkTm0ifm=0Cm1k+1
68 eqeq1 m=k+1m=0k+1=0
69 oveq1 m=k+1m1=k+1-1
70 68 69 ifbieq2d m=k+1ifm=0Cm1=ifk+1=0Ck+1-1
71 peano2nn0 k0k+10
72 nn0p1nn k0k+1
73 nnne0 k+1k+10
74 73 neneqd k+1¬k+1=0
75 iffalse ¬k+1=0ifk+1=0Ck+1-1=k+1-1
76 72 74 75 3syl k0ifk+1=0Ck+1-1=k+1-1
77 ovex k+1-1V
78 76 77 eqeltrdi k0ifk+1=0Ck+1-1V
79 37 70 71 78 fvmptd3 k0m0ifm=0Cm1k+1=ifk+1=0Ck+1-1
80 nn0cn k0k
81 ax-1cn 1
82 pncan k1k+1-1=k
83 80 81 82 sylancl k0k+1-1=k
84 79 76 83 3eqtrd k0m0ifm=0Cm1k+1=k
85 84 oveq2d k0SkTm0ifm=0Cm1k+1=SkTk
86 67 85 eqtrd k0Sk+1=SkTk
87 86 breq1d k0Sk+1Gk+1SkTkGk+1
88 87 biimprd k0SkTkGk+1Sk+1Gk+1
89 88 adantrd k0SkTkGk+1SkBkSkTkBk+1KSk+1Gk+1
90 60 89 syl9r k0φSkGkSk+1Gk+1
91 90 a2d k0φSkGkφSk+1Gk+1
92 14 18 22 26 41 91 nn0ind A0φSAGA
93 92 impcom φA0SAGA