Metamath Proof Explorer


Theorem hgt750lemd

Description: An upper bound to the summatory function of the von Mangoldt function on non-primes. (Contributed by Thierry Arnoux, 29-Dec-2021)

Ref Expression
Hypotheses hgt750lemc.n φN
hgt750lemd.0 φ1027N
Assertion hgt750lemd φi1N2Λi<1 .4263N

Proof

Step Hyp Ref Expression
1 hgt750lemc.n φN
2 hgt750lemd.0 φ1027N
3 fzfid φ1NFin
4 diffi 1NFin1NFin
5 3 4 syl φ1NFin
6 vmaf Λ:
7 6 a1i φi1NΛ:
8 fz1ssnn 1N
9 8 a1i φ1N
10 9 ssdifssd φ1N
11 10 sselda φi1Ni
12 7 11 ffvelcdmd φi1NΛi
13 5 12 fsumrecl φi1NΛi
14 2rp 2+
15 14 a1i φ2+
16 15 relogcld φlog2
17 1nn0 10
18 4re 4
19 2re 2
20 6re 6
21 20 19 pm3.2i 62
22 dp2cl 6262
23 21 22 ax-mp 62
24 19 23 pm3.2i 262
25 dp2cl 262262
26 24 25 ax-mp 262
27 18 26 pm3.2i 4262
28 dp2cl 42624262
29 27 28 ax-mp 4262
30 dpcl 1042621 .4262
31 17 29 30 mp2an 1 .4262
32 31 a1i φ1 .4262
33 1 nnred φN
34 1 nnrpd φN+
35 34 rpge0d φ0N
36 33 35 resqrtcld φN
37 32 36 remulcld φ1 .4262N
38 0nn0 00
39 0re 0
40 1re 1
41 39 40 pm3.2i 01
42 dp2cl 0101
43 41 42 ax-mp 01
44 39 43 pm3.2i 001
45 dp2cl 001001
46 44 45 ax-mp 001
47 39 46 pm3.2i 0001
48 dp2cl 00010001
49 47 48 ax-mp 0001
50 dpcl 0000010 .0001
51 38 49 50 mp2an 0 .0001
52 51 a1i φ0 .0001
53 52 36 remulcld φ0 .0001N
54 1 nnzd φN
55 chpvalz NψN=i=1NΛi
56 54 55 syl φψN=i=1NΛi
57 chtvalz NθN=i1Nlogi
58 54 57 syl φθN=i1Nlogi
59 inss2 1N
60 59 a1i φ1N
61 60 sselda φi1Ni
62 vmaprm iΛi=logi
63 61 62 syl φi1NΛi=logi
64 63 sumeq2dv φi1NΛi=i1Nlogi
65 58 64 eqtr4d φθN=i1NΛi
66 56 65 oveq12d φψNθN=i=1NΛii1NΛi
67 infi 1NFin1NFin
68 3 67 syl φ1NFin
69 6 a1i φi1NΛ:
70 inss1 1N1N
71 70 8 sstri 1N
72 71 a1i φ1N
73 72 sselda φi1Ni
74 69 73 ffvelcdmd φi1NΛi
75 74 recnd φi1NΛi
76 68 75 fsumcl φi1NΛi
77 12 recnd φi1NΛi
78 5 77 fsumcl φi1NΛi
79 inindif 1N1N=
80 79 a1i φ1N1N=
81 inundif 1N1N=1N
82 81 eqcomi 1N=1N1N
83 82 a1i φ1N=1N1N
84 6 a1i φi1NΛ:
85 9 sselda φi1Ni
86 84 85 ffvelcdmd φi1NΛi
87 86 recnd φi1NΛi
88 80 83 3 87 fsumsplit φi=1NΛi=i1NΛi+i1NΛi
89 76 78 88 mvrladdd φi=1NΛii1NΛi=i1NΛi
90 66 89 eqtr2d φi1NΛi=ψNθN
91 fveq2 x=Nψx=ψN
92 fveq2 x=Nθx=θN
93 91 92 oveq12d x=Nψxθx=ψNθN
94 fveq2 x=Nx=N
95 94 oveq2d x=N1 .4262x=1 .4262N
96 93 95 breq12d x=Nψxθx<1 .4262xψNθN<1 .4262N
97 ax-ros336 x+ψxθx<1 .4262x
98 97 a1i φx+ψxθx<1 .4262x
99 96 98 34 rspcdva φψNθN<1 .4262N
100 90 99 eqbrtrd φi1NΛi<1 .4262N
101 40 a1i φ1
102 log2le1 log2<1
103 102 a1i φlog2<1
104 10nn0 100
105 7nn0 70
106 104 105 nn0expcli 1070
107 106 nn0rei 107
108 107 a1i φ107
109 52 108 remulcld φ0 .0001107
110 104 nn0rei 10
111 0z 0
112 3z 3
113 110 111 112 3pm3.2i 1003
114 1lt10 1<10
115 3pos 0<3
116 114 115 pm3.2i 1<100<3
117 ltexp2a 10031<100<3100<103
118 113 116 117 mp2an 100<103
119 104 numexp0 100=1
120 119 eqcomi 1=100
121 110 recni 10
122 10pos 0<10
123 39 122 gtneii 100
124 4z 4
125 expm1 1010041041=10410
126 121 123 124 125 mp3an 1041=10410
127 4m1e3 41=3
128 127 oveq2i 1041=103
129 4nn0 40
130 104 129 nn0expcli 1040
131 130 nn0cni 104
132 divrec2 1041010010410=110104
133 131 121 123 132 mp3an 10410=110104
134 126 128 133 3eqtr3ri 110104=103
135 118 120 134 3brtr4i 1<110104
136 1rp 1+
137 136 dp0h 0 .1=110
138 137 oveq1i 0 .1104=110104
139 135 138 breqtrri 1<0 .1104
140 139 a1i φ1<0 .1104
141 4p1e5 4+1=5
142 5nn0 50
143 142 nn0zi 5
144 38 136 141 124 143 dpexpp1 0 .1104=0 .01105
145 38 136 rpdp2cl 01+
146 5p1e6 5+1=6
147 6nn0 60
148 147 nn0zi 6
149 38 145 146 143 148 dpexpp1 0 .01105=0 .001106
150 38 145 rpdp2cl 001+
151 6p1e7 6+1=7
152 105 nn0zi 7
153 38 150 151 148 152 dpexpp1 0 .001106=0 .0001107
154 144 149 153 3eqtrri 0 .0001107=0 .1104
155 140 154 breqtrrdi φ1<0 .0001107
156 38 150 rpdp2cl 0001+
157 38 156 rpdpcl 0 .0001+
158 157 a1i φ0 .0001+
159 2nn0 20
160 159 105 deccl 270
161 104 160 nn0expcli 10270
162 161 nn0rei 1027
163 162 a1i φ1027
164 161 nn0ge0i 01027
165 164 a1i φ01027
166 163 165 resqrtcld φ1027
167 expmul 1070201072=1072
168 121 105 159 167 mp3an 1072=1072
169 7t2e14 72=14
170 169 oveq2i 1072=1014
171 168 170 eqtr3i 1072=1014
172 171 fveq2i 1072=1014
173 expgt0 1070<100<107
174 110 152 122 173 mp3an 0<107
175 39 107 174 ltleii 0107
176 sqrtsq 10701071072=107
177 107 175 176 mp2an 1072=107
178 172 177 eqtr3i 1014=107
179 17 129 deccl 140
180 179 nn0zi 14
181 160 nn0zi 27
182 110 180 181 3pm3.2i 101427
183 4lt10 4<10
184 1lt2 1<2
185 17 159 129 105 183 184 decltc 14<27
186 114 185 pm3.2i 1<1014<27
187 ltexp2a 1014271<1014<271014<1027
188 182 186 187 mp2an 1014<1027
189 104 179 nn0expcli 10140
190 189 nn0rei 1014
191 expgt0 10140<100<1014
192 110 180 122 191 mp3an 0<1014
193 39 190 192 ltleii 01014
194 190 193 pm3.2i 101401014
195 162 164 pm3.2i 102701027
196 sqrtlt 1014010141027010271014<10271014<1027
197 194 195 196 mp2an 1014<10271014<1027
198 188 197 mpbi 1014<1027
199 178 198 eqbrtrri 107<1027
200 199 a1i φ107<1027
201 163 165 33 35 sqrtled φ1027N1027N
202 2 201 mpbid φ1027N
203 108 166 36 200 202 ltletrd φ107<N
204 108 36 158 203 ltmul2dd φ0 .0001107<0 .0001N
205 101 109 53 155 204 lttrd φ1<0 .0001N
206 16 101 53 103 205 lttrd φlog2<0 .0001N
207 13 16 37 53 100 206 lt2addd φi1NΛi+log2<1 .4262N+0 .0001N
208 nfv iφ
209 nfcv _ilog2
210 2prm 2
211 210 a1i φ2
212 elndif 2¬21N
213 211 212 syl φ¬21N
214 fveq2 i=2Λi=Λ2
215 vmaprm 2Λ2=log2
216 210 215 ax-mp Λ2=log2
217 214 216 eqtrdi i=2Λi=log2
218 2cnd φ2
219 2ne0 20
220 219 a1i φ20
221 218 220 logcld φlog2
222 208 209 5 211 213 77 217 221 fsumsplitsn φi1N2Λi=i1NΛi+log2
223 147 14 rpdp2cl 62+
224 159 223 rpdp2cl 262+
225 3rp 3+
226 147 225 rpdp2cl 63+
227 159 226 rpdp2cl 263+
228 1p0e1 1+0=1
229 4cn 4
230 229 addridi 4+0=4
231 2cn 2
232 231 addridi 2+0=2
233 3nn0 30
234 eqid 62=62
235 eqid 01=01
236 6cn 6
237 236 addridi 6+0=6
238 2p1e3 2+1=3
239 147 159 38 17 234 235 237 238 decadd 62+01=63
240 147 159 38 17 147 233 239 dpadd 6 .2+0 .1=6 .3
241 147 14 38 136 147 225 159 38 232 240 dpadd2 2 .62+0 .01=2 .63
242 159 223 38 145 159 226 129 38 230 241 dpadd2 4 .262+0 .001=4 .263
243 129 224 38 150 129 227 17 38 228 242 dpadd2 1 .4262+0 .0001=1 .4263
244 243 oveq1i 1 .4262+0 .0001N=1 .4263N
245 32 recnd φ1 .4262
246 52 recnd φ0 .0001
247 36 recnd φN
248 245 246 247 adddird φ1 .4262+0 .0001N=1 .4262N+0 .0001N
249 244 248 eqtr3id φ1 .4263N=1 .4262N+0 .0001N
250 207 222 249 3brtr4d φi1N2Λi<1 .4263N